20180227 - Uncertainty Formulas

Wednesday, 28 February 2018

12:02 AM

Machine generated alternative text:
If the uncertainties are de 
xarn e 
endent (based on the same source of uncertain ) the add linearl : 
Adding or 
subtracting 
Multiplying 
or dividing 
Using 
formulae 
p + h), when the dominant 
uncertainty is a systematic uncertainty 
v = I x h x b, where the dominant 
uncertainty in each is a systematic 
uncertainty common to l, h, b 
et O 
Add absolute uncertainty 
Ay Ax + Ax 2Ax 
Ay = Ax, + 
AP = 2(Al + Ah) 
Note the plus sign 
A ractiona /percentage errors 
Aa Ab Ac 
Av Al Ah Ab 
b 
Use the differentia method2 or test the extreme 
points. 
Ay = Ax x f or 
Ay _ Ax) —Rx — Ax) 
2 
If the uncertainties are independent (they have different, uncorrelated sources) they add in 
uadrature: 
eratlOn 
Adding or 
subtracting 
Multiplying 
or dividing 
Using 
formulae 
xan-l e 
et o 
a so ute uncertainties In qua rature. 
AZ (Ax) 2 + (Ay)2 
AP = 2 (Alf + (Ah)2 
Add fractional (percentage) uncertainty in quadrature. 
Az 
Ay 
partla erlvatlve welg te uncertalntles In qua ratur _ 
Df 
Ax x 
Ox 
z f(x,y) 
+ Ay x 
(fix.y 4-Ay) — fix.y — Ayl)2 
AZ (fix + Ax.y) — fix — Ax.yb)2 
To get from a fractional uncertainty to a percentage uncertainty multiply by 100 
Beware of the possibility of a turning point between X+Ax and x—Ax, which will cause this method to fail. 
(e.g. y = sin(x), where x = 100)

 

Created with Microsoft OneNote 2016.