Variance of a sum of random variables

Tuesday, 2 July 2019

3:10 PM

Variance of a sum of random variables 
From the properties of the covariance, it follows: 
Var (ax + bY) = Cov(aX + by, ax + bY) 
= cov(aX, ax) + cov(aX, bY) 
+ ax) + Cov(bY, bY) 
= Var(aX) + Var(bY) +2 cov(aX, bY) 
a2Var(X) + b2Var(Y) + 2abCov(X, Y) 
Now, if X and Y are independent random variables, 
var (ax + bY) = a2Var(X) + b2Var(Y) 
For instance, if X and Y are independent, 
Var(X + Y) = Var(X) + Var( Y) 
var(X - Y) = Var(X) + Var(Y)

 

Created with Microsoft OneNote 2016.