Mixed Derivative Theorem

Friday, 10 August 2018

3:52 PM

If 𝐹(𝑥,𝑦) is a continuous function of two variables and all of its first and second order partial derivatives are continuous then
﷐﷐δ﷮2﷯𝐹﷮𝛿𝑥𝛿𝑦﷯=﷐﷐𝛿﷮2﷯𝐹﷮𝛿𝑦𝛿𝑥﷯

Tangent Planes and Surface Normal

𝑦=𝑓﷐𝑥﷯








𝑦−﷐𝑦﷮0﷯=﷐𝑓﷮′﷯﷐﷐𝑥﷮0﷯﷯﷐𝑥−﷐𝑥﷮0﷯﷯

Normal = −﷐1﷮﷐𝑓﷮′﷯﷐﷐𝑥﷮0﷯﷯﷯
𝑥−﷐𝑥﷮0﷯=﷐𝑓﷮′﷯﷐﷐𝑥﷮0﷯﷯﷐𝜆﷯
𝑖𝑓 𝜆=﷐𝑦﷮0﷯−𝑦 then,
﷐﷐𝑥﷮𝑦﷯﷯=﷐﷐﷐𝑥﷮0﷯﷮﷐𝑦﷮0﷯﷯﷯+𝜆﷐﷐𝑓′(﷐𝑥﷮0﷯)﷮−1﷯﷯
So the normal vector to the curve 𝑦=𝑓(𝑥) at (﷐𝑥﷮0﷯,﷐𝑦﷮0﷯) is ﷐﷐𝑓′(﷐𝑥﷮0﷯)﷮−1﷯﷯

3D Normal Vector to the Surface at ﷐﷐𝑥﷮0﷯,﷐𝑦﷮0﷯,﷐𝑧﷮0﷯﷯
﷐﷐﷐𝐹﷮𝑥﷯(﷐𝑥﷮0﷯,﷐𝑦﷮0﷯)﷮﷐𝐹﷮𝑦﷯(﷐𝑥﷮0﷯,﷐𝑦﷮0﷯)﷮−1﷯﷯

Find the equation of the tangent
﷐﷐𝑥−﷐𝑥﷮0﷯﷮𝑦−﷐𝑦﷮0﷯﷮𝑧−﷐𝑧﷮0﷯﷯﷯ ﷐ ﷯ ﷐﷐﷐𝐹﷮𝑥﷯﷐﷐𝑥﷮0﷯,﷐𝑦﷮0﷯﷯﷮﷐𝐹﷮𝑦﷯﷐﷐𝑥﷮0﷯,﷐𝑦﷮0﷯﷯﷮−1﷯﷯=0
** Perpendicular to the normal is the tangent, so we can use the dot product!!
Ink Drawings
Ink Drawings
Ink Drawings
Ink Drawings
Ink Drawings


 

Created with Microsoft OneNote 2016.