Example
Friday, 15 March 2019
7:14 PM
Let . Then![]()
 if and only if both  and ![]()
Firstly, suppose that ![]()
![]()
 -> ![]()
 -> ![]()
Therefore  and ![]()
Conversely, suppose that  and ![]()
![]()
 so  is even![]()
 is even![]()
Hence  is even![]()
Therefore  for some integer ![]()
![]()
Therefore ![]()
This completes the proof
Created with Microsoft OneNote 2016.