ELEC2134 > Signals
[..]
(d^2 x)_dt+3 dx_dt+2x=4e^(−3t) u(t)
--
Applications of Laplace Transforms
Applications
Aside_ Convolution
Aside_ Linear Time Invariant (LTI) systems
Complex Fourier Series
Convolution Operator ∗
Convolution
Example - Dirac Delta
Example - Exponential decay (when a_0)
Example - Unit step function
Example
Exercises
F(s)=1_((s+1) (s+2)^2 )=A_(s+1)+B_(s+2)+C_(s+2)^2
Fourier Series
Fourier Transform
Frequency Spectrum
Given v_c (0)=0, i_c (0)=0
Initial Conditions
Laplace Transform
Other Transform Pairs
Partial Fraction Expansions
Poles and Zeroes
Power in a Fourier Series
Properties of the Fourier Transform
Properties
SUMMARY
The Big Picture - Fourier Transforms
The Dirac Delta
The Signum Function
The Unit Step Function
Y(s)=(s−2)_(s(s+1)^3 )=A_s+B_(s+1)+C_(s+1)^2 +D_(s+1)^3
deg(numerator)≥deg(denominator)
f(t)=(2−3e^(−10t)+e^30t )u(t)
f(t)=tu(t)
s(s^2+2s+5)
These notes were
generated
from OneNote. Sorry if it looks like a mess!