
School of Computer Science and Engineering

Faculty of Engineering

The University of New South Wales

Requirements to theses submitted in

the Faculty of Engineering

by

Andrew Jin-Meng Wong

Thesis submitted as a requirement for the degree of

Bachelor of Engineering in Computer Engineering

Submitted: August 2022

Supervisor: Prof. Richard Buckland

Student ID: z5206677

Topic ID: “Smart” Vacuum Cleaners

An Audit Into The Security and Integrity of IoT Systems

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

Abstract

Research Statement: How have manufacturers of IoT / smart home devices addressed the
increasing concerns of digital privacy and product security

With the ever-growing adoption of convenient and user-friendly Internet of Things devices,
more and more objects around us have made their way onto the internet, requiring connectivity
to the web for one reason or another. Despite the unknown nature of communication and limited
transparency of data, such privacy concerns are often overlooked in exchange for convenience.
This paper audits the Roborock S6 robotic vacuum cleaner to assess its internal operations and
network activity behaviour, as to investigate any potential vulnerabilities that may render the
device unsafe or insecure.

A combination of dynamic and static binary analysis methods were performed to assess the
security of the device, and network activity was inspected to verify the contents of network
traffic. Investigation results revealed discrepancies in both the security of the product, and the
privacy of user data pertaining to authentication credentials. Notably, a novel command
injection exploit was proposed, and suggestions were made to better improve the device’s
security and privacy.

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

Acknowledgements

sonder (noun)
the realisation that each random passerby is living a life as vivid and complex as your own

I would like to thank my family and friends for supporting me through my ventures and
adventures at the University of New South Wales. This support was not solely just for this
thesis adventure that I had decided to embark on, nor was it just from the wisdom or knowledge
I learned or gained, but from every moment shared with others in the downtimes and pauses of
my, and our sonderous lives.

Thank you to my peers and students from my tutorial classes who showed curiosity in my
research, gave me a platform to share my passion, and a provided me a means to stay motivated.
A special thank you to the friends who basically sat around with me doing nothing - yet made
those moments so very memorable.

Thank you to my supervisor Lachlan and Prof. Richard Buckland for the various resources,
tips, tricks and meaningful yet entertaining conversations about computers, and other things
along those lines...

And of course, thank you to my family for their daily nagging to tell me to rest and go to sleep.

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

Contents

CHAPTER 1 | INTRODUCTION 1

CHAPTER 2 | A BACKGROUND ON IOT 3

THE CALL TO ACTION 3

ABOUT THE PRODUCT 3

CHAPTER 3 | CURRENT STATE OF THE ART 4

BROAD SECURITY STUDY OF TUYA-BASED DEVICES 4

BROAD SECURITY STUDY OF XIAOMI-BASED DEVICES 5

SECURITY STUDY OF SMARTPHONE APPLICATIONS 5

ANALYSIS OF SIMILARITIES IN IOT FIRMWARES 6

SIDE-CHANNEL APPLICATION OF LIDAR SENSOR MEASUREMENTS 6

SHELL ACCESS VIA SIDELOADED MEDIA 7

SHELL ACCESS VIA BGA PIN SHORTING 7

HARDWARE BASED EXTRACTION OF FLASH MEMORY 8

COLD-BOOT ATTACK TO DUMP MEMORY STATE 8

CHAPTER 4 | THREAT MODELLING 9

CHAPTER 5 | WORK PERFORMED 10

SCOPE AND SUMMARY OF WORK 10

PRELIMINARY DEVICE ACCESS 11

DYNAMIC FIRMWARE ANALYSIS 12

STATIC FIRMWARE ANALYSIS 17

UPGRADE ANALYSIS (VERSION 02.29.02) 23

NETWORK ACTIVITY ANALYSIS 28

DEVICE ENTRY AND PERSISTENCE ANALYSIS 37

CHAPTER 6 | DISCUSSION 42

COMMENTARY 42

RESPONSE OF OTHER MANUFACTURERS 45

CONCLUSION 46

FUTURE WORK 47

BIBLIOGRAPHY 48

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

List of Figures

FIGURE 1 - UART PIN LOCATIONS .. 11

FIGURE 2 - PASSWORD DECRYPTION OF THE VINDA FILE ... 11

FIGURE 3 - PROCESS LIST (V01.15.58) ... 13

FIGURE 4 - NETSTAT (V01.15.58) .. 14

FIGURE 5 - IPTABLES (V01.15.58) ... 14

FIGURE 6 - IP6TABLES (V01.15.58) ... 14

FIGURE 7 - IFCONFIG (V01.15.58) ... 14

FIGURE 8 - /ETC/PASSWD (V01.15.58) .. 15

FIGURE 9 - /ETC/SHADOW (V01.15.58) ... 15

FIGURE 10 - GENERATED SHA512 PASSWORD HASH ... 15

FIGURE 11 - UNDERSIDE OF THE CHARGING DOCK .. 15

FIGURE 12 - 2-WIRE BATTERY SHUTDOWN LOG ... 15

FIGURE 13 - SERIAL LOG DURING FACTORY RESET ... 16

FIGURE 14 - FIRMWARE DUMP COMMANDS ... 17

FIGURE 15 – FILE STRUCTURE OF MMCBLK0P11 ... 18

FIGURE 16 - SCREENSHOT OF THE COMMENTREE TOOL ... 18

FIGURE 17 – BINDIFF COMPARISON OF NTPDATE (V01.15.58) ... 19

FIGURE 18 – APT-GET HISTORY.LOG FILE .. 19

FIGURE 19 – EXPOSED MICRO USB CONNECTOR ON THE ROBOROCK S6 .. 20

FIGURE 20 – CUSTOM ADBD AUTH CHALLENGE FLOW ... 20

FIGURE 21 – ADBD LOCK RESET FLOW.. 21

FIGURE 22 – ADBD COMMAND INJECTION VULNERABILITY POC .. 21

FIGURE 23 - DISASSEMBLY OF THE ENCRYPTION ROUTINE IN RRLOGD (V01.15.58) 22

FIGURE 24 – IPTABLES ALLOW RULE IN RRLOGD (V01.15.58) .. 22

FIGURE 25 – OBSOLETE DECRYPTION ROUTINE IN SYSUPDATE.. 23

FIGURE 26 – IP6TABLES RESULTS (V02.29.02) ... 24

FIGURE 27 – VERIFY_SHADOW FUNCTION ROUTINE ... 25

FIGURE 28 – SYSV CONFIGURATION SCRIPT (V02.29.02) ... 26

FIGURE 29 – WATCHDOGE PROCESS ENFORCING IPTABLES .. 27

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

FIGURE 30 - ISOLATED NETWORK CONNECTION DIAGRAM ... 28

FIGURE 31 - CRYPTO FUNCTION HOOK SOURCE CODE ... 30

FIGURE 32 – NETWORK COMMUNICATION DIAGRAM ... 31

FIGURE 33 – PRIVACY POLICY EXCERPT .. 32

FIGURE 34 – EXPOSURE OF WIRELESS CREDENTIALS IN RRIOT_TUYA.LOG (FW: V02.29.02) 32

FIGURE 35 - PLAIN-TEXT CREDENTIAL TRANSMISSION DURING PAIRING .. 33

FIGURE 36 – MQTT SERVER DATA HEATMAP ... 34

FIGURE 37 – MQTT SERVER HISTORICAL OVERVIEW .. 34

FIGURE 38 – CONTROL SERVER DATA HEATMAP .. 34

FIGURE 39 – FDS SERVER DATA HEATMAP ... 35

FIGURE 40 – FDS SERVER FLOW GRAPH .. 35

FIGURE 41 – GEOMAP OF DEVICE ACTIVITY TO XIAOMI FDS SERVERS .. 35

FIGURE 42 – MUD USAGE DIAGRAM .. 36

FIGURE 43 – MUD PROFILE SNIPPET (V02.29.02) ... 36

FIGURE 44 – RRWATCHDOGE.CONF WITH SSH ACCESS PATCH .. 38

FIGURE 45 – MIIO OTA PAYLOAD ... 39

FIGURE 46 – SILENT FAIL OF THE MIIO.OTA PAYLOAD ... 39

FIGURE 47 – ZEROTIER CONTROL PANEL .. 40

FIGURE 48 – SCREENSHOT OF CVES ASSOCIATED WITH XIAOMI ... 45

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

List of Tables

TABLE 1 - THREAT MODEL MATRIX .. 9

TABLE 2 - ROOT PASSWORD EXTRACTION PROCEDURE .. 11

TABLE 3 - V01.15.58 SYSTEM FINGERPRINT .. 12

TABLE 4 - IMPORTANT PROCESSES (V01.15.58) ... 13

TABLE 5 - UNTOUCHED DIRECTORIES DURING VOLATILE ACTIONS .. 16

TABLE 6 – FIRMWARE PARTITION MAPPING .. 17

TABLE 7 – FIRMWARE UPGRADE CHANGELOG ... 23

TABLE 8 – WLANMGR ROUTINE 0X136E8 (V02.29.02) ... 27

TABLE 9 – COLLECTED NETWORK DATA (V02.29.02) ... 27

TABLE 10 - NETWORK EQUIPMENT LIST ... 28

TABLE 11 – COMPARISON OF DATA TRANSPARENCY METHODS ... 29

TABLE 12 – OVERVIEW OF NETWORK ENDPOINTS .. 30

TABLE 13 – OVERVIEW OF DEVICE ENTRY AND ACCESS METHODS .. 37

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

Table of Abbreviations

 Expansion Meaning

C2 Command and Control Remote action management

DUT Device Under Test Relating to the specific device being tested

eMMC Embedded Multimedia Card Onboard storage

HSTS HTTP Strict Transport Security Network security policy

IoT Internet of Things Classification of network-connected devices

IP Internet Protocol Network communication protocol

IPC Inter-Process Communication Data exchange between programs in a system

MAC Media Access Control Unique network device identifier

MITM Man In The Middle Intercepted communication

MQTT Message Queue Telemetry Transport Network communication protocol

NIC Network Interface Card Hardware to connect a device to a network

PII Personal Identifiable Information Data that could identify an individual

PoC Proof of Concept A demonstration to prove a concept / theory

SDK Software Development Kit Building blocks for software interoperability

SoC System on Chip An entire system integrated into a single chip

SSID Service Set Identifier Wi-Fi network name

SSL Secure Sockets Layer Network security protocol

TLS Transport Layer Security Network security protocol

UART Universal Asynchronous
Receiver/Transmitter Hardware communication protocol

UGC User Generated Content Data created by the user

WEP Wired Equivalent Privacy Network security algorithm

WPA Wi-Fi Protected Access Network security algorithm

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

1

Chapter 1 | Introduction

Consumer grade Internet of Things (IoT) devices have become widely adopted with
continuously growing demand. With demand growing by 12% each year (Research & Markets
2021), this AU$130bn industry has cordially invited thousands of households to invest in smart
devices such as light bulbs, fans, televisions and fridges. Giving the abundance and
affordability of these products, IoT devices have become an integral part of many homes, where
4 in 5 consumers would be more inclined to choose a property over another given the presence
such technologies (Brown 2015).

Although convenient, these devices come with hidden costs and risks. Behind the seemingly
‘simple’, ‘smart’ and ‘secure’ product features that attract consumers lie a hidden complex
network of services and devices, where functionality is often obscured and private. Without
the transparency of what data is being sent, and of where that data is being sent to, consumers
inevitably pay for convenience with not only their money but with their privacy and security
(Miralem, Nejra et al. 2019)

Whilst manufacturers and vendors claim to be secure and/or confidential in how they treat UGC
and PII, it is evident from various incidents that we cannot completely trust such claims. From
leaked Facebook user data (Abrams 2021), to rumours of corporations monetising user data
without consent (Jones 2017), there lies an equal need for consumers to understand the terms
of service to which they agree to, but additionally for companies to be audited against those
very same terms of service.

The infrastructural security and product security of IoT devices must also be scrutinised, given
the rapid product lifecycle of IoT developments (Giese 2021). As security is often not a sellable
feature in contrast to new products and most fallibly – convenience, proper and wholistic
security precautions are often overlooked by companies who are more concerned with profits.
Consequently, the prevalence of malicious actors in the cyberworld is alarming, where the
overall lack of security awareness between consumers invites target devices to be easily
accessed with default passwords or through unpatched vulnerabilities1.

Given the black-box nature of IoT network communications where there is little transparency
about the functionality and usage of IoT devices beyond their advertised description, there is a
need to shed light unto the privacy and security of these devices. This thesis aims to detail
how manufacturers of IoT / smart home devices have addressed the increasing concerns
of digital privacy and product security. Specifically, we audit the Roborock S6 robotic
vacuum cleaner to assess its internal operations and the nature of data that is transmitted, as to
verify manufacturer claims, and investigate potential vulnerabilities that render the device
insecure.

We first study further motivations behind auditing the privacy and security of IoT systems,
then review existing research and methods that comprise the current state of the art of IoT
security and privacy research. Finally, we detail the work performed in this thesis and discuss
the contributions and conclusions, providing suggestions to further the security and privacy of
IoT devices.

1 https://www.shodan.io/search?query=webcam

https://www.shodan.io/search?query=webcam

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

2

Summary of Major Contributions

This thesis critically analyses the security and privacy of the Roborock S6’s firmware and
network communications. A list of major contributions and actionable findings are as follows,
by decreasing order of severity and importance.

Data Persistence
File persistence tests were conducted to test the retention of data during the following
scenarios: firmware upgrade, factory reset, device disassociation (unpairing). It was observed
that no data was cleared when a device was unpaired, raising concerns regarding data privacy.
Methods were proposed to persist data during firmware upgrades and factory resets.

Privacy Policy
The privacy policy of the vacuum cleaner data was assessed and revealed that a statement
regarding the locality of wireless credentials was non-compliant, as the credentials were found
within uploaded log data.

Pairing Security
The pairing process of the device was observed and revealed that wireless credentials were
transmitted in plain text over an unsafe medium (wireless network with open / no security),
despite IoT ecosystem vendor guidelines to require a secured means of communication.

Product Security
Security assessments were performed on the programs in the Roborock S6 firmware to evaluate
the security of the device. Whilst most programs were secure, a novel command injection
vulnerability was discovered in the Android Debugging Bridge implementation. A proof of
concept was created and disclosed to the vendor.
Upgrade analysis revealed that the vendor has made non-trivial effort to fortify their software
against vulnerabilities and limit unauthorised access to the device.

Network Behaviour
The nature and content of network traffic generated by and received from the Roborock S6 was
analysed to create a connection map of device communications, and a heatmap of network
activity. A Manufacturer Usage Description profile (RFC 8520) was created for the device to
better describe its expected traffic behaviour and provide a means to mitigate foreign traffic.
The IPv6 capability of the device was also tested, drawing conclusions that possible IPv6
related issues were benign.

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

3

Chapter 2 | A Background on IoT

The Call to Action

The consumer market has experienced a large influx of IoT devices, largely attributed to the
presence of IoT manufacturers who offer white-label partnerships with resellers to provide
“custom” products. Through these partnerships, vendors buy into the IoT manufacturer’s
ecosystem - namely the product itself, the companion smartphone application, and the cloud
infrastructure supporting network communications - all without requiring vendors to possess
any knowledge or understanding of how to design, develop nor manufacture the IoT products
that they sell.

This raises concerns regarding the privacy and ownership of user data that is transmitted, as
vendors themselves are often not in control of what information is transmitted nor of how that
information is used – for example if the microphone data of a surveillance camera was used to
determined advertised products related to the conversation. The lack of control over
information is a potentially serious concern, as vulnerabilities within an IoT infrastructure
would endanger customers from other vendors under the same infrastructure. Furthermore, the
lifetime of a vendor business is not guaranteed. With the constant opening and sunsetting of
IoT vendors, the closure of the business from which an IoT product was purchased from might
eventually render the device inoperable.

In the event that an IoT infrastructure suffers downtime or service instability, all white-labelled
products too will also be affected. Great trust must be placed in the infrastructure’s availability
and reliability. In conjunction with aforementioned privacy and security concerns, many
concerned users have turned to internet-less and self-hosted automation systems such as
HomeAssistant and OpenHAB. As evident in later reviewed works, concerns for privacy and
security have been a driving force for developers and hackers to research and develop software
to replace the internet-dependent stock software, effectively decoupling devices from vendor
services.

About the Product

Beijing Roborock Technology Co., Ltd. (Roborock) is a Chinese company founded in Beijing
that develops robotic cleaning appliances for households. In 2014, partnering with Xiaomi
Corporation shortly after the opening of their business, the company released a line of both
affordable and premium smart robotic vacuum cleaners, with their first iteration the “Mi Home
Robotic Vacuum Cleaner” being released in Sep 2016. They have since released twelve other
robotic vacuum cleaner models, each model offering new and improved features. Despite
having released 13 different products, only one security vulnerability has been publicly
disclosed2, raising concern about the company’s security.

In June 2019, Roborock released their flagship Roborock S6 vacuum cleaner. Featuring an
Allwinner R16 SoC (ARM architecture), it is powered by either the Tuya Smart or Xiaomi
Cloud infrastructure, both market leaders in the consumer IoT industry. Despite being released
three years ago, the Roborock S6 vacuum cleaner is still widely popular and actively
maintained by Roborock. This device will be the DUT (device under test) in this thesis.

2 https://global.roborock.com/pages/disclosure-security-vulnerability-on-tuya-iot-cloud

https://global.roborock.com/pages/disclosure-security-vulnerability-on-tuya-iot-cloud

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

4

Chapter 3 | Current State of the Art

Broad security study of Tuya-based devices

The security research group Vtrust (2018) analysed a line of white-labelled IoT product
revisions based on the IoT manufacturer Tuya to identify common security vulnerabilities.
Despite vendor claims of ‘military-grade security’, basic packet logging of network activity
concluded that “the analysis of the ‘smart’ devices using this basic platform is generally
frightening”, with “serious […] shortcomings”. It was revealed that various PII, encryption
keys and the device’s serial number (used to specify a device during remote commands) were
insecurely transmitted over the network, allowing a user on the same wireless network to
eavesdrop on the communication. Furthermore, during the initial setup and pairing of the IoT
device, wireless credentials were also insecurely transmitted in plain text, allowing wireless
network credentials to be observed.

Vtrust commented on the dangers of vendors selling white-label products, where anyone could
become a so-called ‘IoT company’ regardless of whether they had “in-depth technical
knowledge of IoT or IT security”. As a result of the hands-free approach to security and privacy
for both direct and indirect customers of the IoT platform, concerns were raised regarding the
ease of distributing maliciously modified devices, where firmware could be tampered with
during any stage within the supply chain.

It is worthwhile to recognise that most custom firmware releases or “hardware hacks” originate
from the desire to decouple hardware from online and official cloud services. These ventures
effectually disconnect internet-reliant devices from the cloud, and limit their connectivity to a
local server where communications are transparent and minimal.

As a result of many Tuya-powered devices sharing the widely popular Espressif ESP8266
SoC3, Vtrust was able to exploit discovered vulnerabilities on multiple products to perform
over-the-air upgrades of custom firmware (e.g. ESPhome, Tasmota). An automated flashing
tool (tuya-convert) was released, allowing consumers to easily integrate these devices with
local home automation software such as HomeAssistant. As a result of Vtrust’s findings, the
overall security posture of modern Tuya-powered devices has since improved4, with
implementations of local flash memory encryption and firmware signing measures during over-
the-air firmware upgrades.

Vtrust’s technical findings offer insights into methods of network-level security assessment
highlighting how easily an individual could start their own IoT company, and the possibility of
reselling devices with modified firmware with malicious intent. In this thesis we perform
similar network security assessments through means of analysing packet captures to determine
if data is weakly or insecurely transmitted.

3 https://www.espressif.com/en/products/socs/esp8266
4 https://www.heise.de/newsticker/meldung/Smart-Home-Hack-Tuya-veroeffentlicht-Sicherheitsupdate-
4292028.html

https://esphome.io/
https://tasmota.github.io/docs/
https://github.com/ct-Open-Source/tuya-convert
https://www.home-assistant.io/
https://www.espressif.com/en/products/socs/esp8266
https://www.heise.de/newsticker/meldung/Smart-Home-Hack-Tuya-veroeffentlicht-Sicherheitsupdate-4292028.html
https://www.heise.de/newsticker/meldung/Smart-Home-Hack-Tuya-veroeffentlicht-Sicherheitsupdate-4292028.html

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

5

Broad security study of Xiaomi-based devices

Giese (2019) performed a security assessment over a broad range of Xiaomi’s IoT products to
examine the overall security of the Xiaomi ecosystem. Through different software injection
and hardware fault injection techniques, Giese obtained shell access into various Xiaomi-
powered devices. It was concluded that due to the enormous size of Xiaomi’s ecosystem, it
was difficult to enforce global security policies between the different vendor-provided plugins
that continued to support deprecated functions and APIs that were still being used by legacy
devices. Out from this research, a cloud emulator5 was built, allowing for complete offline
functionality and control over a large range of Xioami devices without requiring internet
connectivity. This research also paved the way for other third-party, privacy-focused, vacuum
cleaner remote applications to developed, such as Valeduto.

He concluded that Xiaomi indeed treats their security concerns seriously, given their quick
responses to reported security incidents and vulnerability reports. In this thesis, we too will
assess the security and privacy postures of IoT devices on the business-level.

It should be noted that Giese briefly assessed the security of the Roborock S6 vacuum cleaner
in his study. Whilst Giese did perform a security analysis of the device under test, this thesis
was performed as an independent study. With the exception of Giese’s work to obtain initial
shell access, all other similar methods performed, findings and observations are coincidental.
This thesis furthers previous studies as it additionally audits the state of privacy of the device.

Security study of smartphone applications

Jmaxxz (2016) investigated the security claims of a smart doorlock which had boasted in its
bank-grade security, and superiority over conventional lock-and-key systems. These claimed
were however invalidated, as flaws within the smartphone application were discovered which
allowed control over the lock settings, amusingly only being protected by client-side checks.
Consequently, modified request payloads containing elevated authorisation claims would be
naively accepted by the server, allowing lock settings to be modified by a guest or other user.
Furthermore, various debugging menus were present in the production version of the
smartphone application, allowing certificate pinning protections to be subverted. In addition,
the privacy of the user was also questioned, as it was observed that door lock events and other
identifiable information were being transmitted to a logging endpoint.

The vulnerabilities in the smart doorlock’s own product security highlight the importance to
verify any claims that manufacturers may advertise. This study serves as an excellent example
of a failed access control system, where elementary methods of request tampering and
hardcoded keys allow for arbitrary privileged control of a device. Subversion of HTTP Strict
Transport Security (HSTS) and certificate pinning policies through system-wide tools6, per-
application patching7 or accessible debug menus furthermore underlines that certificate pinning
should not be relied upon to verify identity nor authority.

5 https://github.com/dgiese/dustcloud
6 https://github.com/nabla-c0d3/ssl-kill-switch2
7 https://github.com/shroudedcode/apk-mitm

https://github.com/dgiese/dustcloud
https://github.com/Hypfer/Valetudo
https://github.com/dgiese/dustcloud
https://github.com/nabla-c0d3/ssl-kill-switch2
https://github.com/shroudedcode/apk-mitm

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

6

Analysis of similarities in IoT firmwares

Costin, Zaddach et al. (2014) performed a broad static firmware analysis over a large number
of firmware images to identify common patterns and similarities between product vendors.
During the analysis of the 693 images, 38 new vulnerabilities were discovered, some of which
were present in the majority of images. Many hardcoded keys and credentials were also
discovered that could render the IoT device or its infrastructural service vulnerable. To
facilitate the similarity analysis of firmware images, where per-byte analysis techniques are
nonsensical, tools like binwalk, ssdeep, and sdhash were employed - which helped to
facilitate file exploration relative to their file type and architecture. To compare versions of the
same binary across different firmwares, a tool called BinDiff was used, which would compare
the similarities and differences in assembly code and call graphs.

A large proportion of images shared similarities in code execution graphs, indicating that many
vendors had simply reused and repurposed sample code (often available as part of the SDK
from a SoC vendor or IoT framework). Whilst sample code itself is not often vulnerable, given
the commonality of other vulnerabilities, concern is raised as to the vendor’s technical
capability and understanding of IoT systems and of security. The tools and methods to perform
this firmware study are transferable to the scope of this thesis, where static analysis of
executable programs can be used to identify vulnerabilities or potential malicious modifications
to existing software.

Side-channel application of LIDAR sensor measurements

As more and more IoT devices become online and sensor data is transmitted around the world,
there are growing concerns to thoroughly investigate the extents of what data can be retrieved
from the sensors. Given that the outputs of Light Detection and Ranging (LIDAR) sensors are
reflected intensity values and distance measurements, Wei, Wang et al. (2015) developed a
method to translate the intensity readings from the LIDAR sensor back into audio signals, when
the LIDAR sensor was directed towards a surface near an audio source. This allowed speech
to be identified from micro-vibrations within objects, raising concern regarding the privacy and
confidentiality of conversations held within a sound-proof room.

This research has since been continued and tested on robot vacuum cleaners which too
incorporate LIDAR sensors intended for spatial mapping. In the application of a robotic
vacuum cleaner, light intensity values are considered a side-channel concern as those readings
are not required for the operation of a vacuum cleaner. As general off-the-shelf LIDAR sensor
units (capable of reading such light intensity values) are used within vacuum cleaners, this
technique could be also applied to detect speech and sound (Sriram, Xiang et al. 2020). Despite
the limitations of sampling light intensity values on a vacuum cleaner (i.e. accounting for the
continuous rotation of the LIDAR sensor and audible noise floor as a result of the vacuum
engine), a high classification accuracy of 91% was still achieved when extracting sensitive data
from speech such as digits of a credit card.

Whilst this thesis will not pursue the exploration of sensor data analysis, these two studies offer
potential future research areas on privacy concerns surrounding robot vacuum cleaners, as
newer revisions of smart devices become continually equipped with more accurate and feature-
rich sensors.

https://github.com/ReFirmLabs/binwalk
https://github.com/ssdeep-project/ssdeep
https://github.com/sdhash/sdhash
https://www.zynamics.com/software.html

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

7

Shell access via sideloaded media

Often as a necessary preliminary step to further research, modification and integration of
proprietary technologies, many device rooting methods (i.e ways to gain elevated access to a
device) have been publicly disclosed on the internet. Commonly, devices which are not
expected to have internet connectivity may provide offline firmware upgrade functionality by
executing a script or booting from some form of removable flash memory such as a microSD
or SD card. Kotlyar (2017) demonstrated the ability for the inexpensive Xiaomi Dafang
Camera to boot into a custom alternate u-boot bootloader that was flashed onto a microSD
card. Upon detection of a firmware-like storage medium, the device executed the contents of
the microSD card, and booted into shell instead of the original entry-point script, effectively
rooting the device. Kotlyar was then able to dump the firmware, later producing a custom
firmware release that did not rely on the vendor’s cloud infrastructure.

Through the subversion of interrupting the default boot sequence, resultant shell access allowed
for the development and release of decoupled software. Whilst the exact rooting steps are
unlikely to be directly transferable to other devices, the idea of obtaining elevated access via
sideloading techniques is an important method to investigate. Throughout the course of the
thesis, we attempted to gain shell access via sideloading methods, but were unsuccessful.

Shell access via BGA pin shorting

For devices that do not automatically boot into removable media, methods have been
discovered to force certain SoC’s to enter a recovery or fallback mode. Allwinner-based SoCs
implement a mode known as “FEL” that can be entered by pulling a certain pin LOW during
boot8, which allows device manufacturers to perform initial image flashing and bootloader
configuration. For developers and hardware hackers, FEL mode allows users to modify the
boot environment to execute a shell, allowing for further post-exploitation methods and
firmware dumping / analysis.

It is noted that FEL mode can also be entered if the SoC fails to successfully launch the
bootloader. Giese (2019) identified this fact and exploited the physical pin layout of the
Allwinner R16 BGA package, where the data pins connecting the SoC to the (e)MMC chips
(where the bootloader is stored) were on the physical perimeter of the SoC. By sliding a piece
of aluminium foil between the circuit board and the solder plane of the SoC, the electrically
conductive aluminium foil could momentarily short the data pins long enough to cause the
bootloader read operation to corrupt and fail, hence booting into FEL mode and eventually
gaining shell access. This method is favourable when compared to pulling the FEL pin low
during boot - as access to the FEL pin would require the desoldering and removal of the SoC
from a circuit board - which can be tedious and prone to mistake and irreversible damage.

Through this hardware fault injection technique of shorting data pins during boot, Giese was
able to successfully gain access to a shell on Roborock’s first robot vacuum cleaner (Mi Robot
Vacuum Cleaner). On a different vacuum cleaner (the Roborock S7), Giese noted that test pad
TPA17 on the circuit board was connected to the SoC’s FEL pin - allowing FEL mode to be
entered by usual means without needing to perform a hardware fault injection.

8 Generally triggered by pulling the FEL pin (LRADC0) LOW during boot

https://linux-sunxi.org/images/b/b3/R16_Datasheet_V1.4_(1).pdf

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

8

Hardware based extraction of flash memory

In situations where no provisions exist to programmatically extract stored data from a system
(i.e. shell access to perform disk imaging), hardware devices known as flash programmers can
be used; designed to read from and write data onto flash chips. Flash programmers incur a high
cost overhead, as they are rather expensive and only work with specific models and/or types of
flash chips; rendering it infeasible to own a specific flash programmer for every type of flash
chip. Jimenez (2016) points out that a Raspberry Pi could be used as an affordable budget
solution when paired with open-source flash programming software like flashrom.

It is noted that the process of hardware flash chip dumping is not feasible in the scope of this
thesis due to resource and cost constraints of not possessing a suitable flash programmer, as
well as the risk associated with hardware-based methods being possibly destructive with
irreversible damage. This method of flash memory extraction was not required as other
methods were successfully performed to obtain the firmware data of the device under test.

Cold-boot attack to dump memory state

Regarding prior investigations of smart robot vacuum cleaners, Ullrich, Classen et al. (2019)
performed a security analysis on the Neato BotVac Connected robot. Through the combination
of a cold-boot attack - where a system is rebooted without the volatile memory (i.e. RAM)
being cleared - and the booting of a custom bootloader image, the memory state of the system’s
prior execution was able to be dumped and analysed. This memory dump is of significant value
as it would contain the binaries of loaded programs as well as their application state. The
proceeding analysis revealed major vulnerabilities and concerns in the vacuum cleaner and
more alarmingly, in Neato’s cloud infrastructure.

Whilst logs and coredumps were encrypted when transmitted to cloud servers, encryption keys
were discovered to be hardcoded which nullified any assurances of encryption. Authentication
and authorisation tokens were all encrypted with the same weak RSA key - which left the entire
cloud infrastructure vulnerable to impersonated identities and access. Seemingly random
generated keys were also discovered to be vulnerable, due to the keyspace for entropy being so
short that the key was able to be bruteforced within reasonable time. Furthermore, an
unauthenticated endpoint on the robot vacuum cleaner’s remote port was found to be vulnerable
to a buffer overflow, allowing remote code execution on the robot by anyone connected to the
same wireless network.

The analysis of a system’s memory state is beneficial to the security assessment of a product’s
firmware as static analysis techniques are unable to account for dynamic data such as response
payloads from client-server communications. This method of memory extraction was not
required as other simpler methods were successfully performed to obtain the firmware data of
the device under test.

https://www.flashrom.org/Flashrom

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

9

Chapter 4 | Threat Modelling

To qualify the observations of proceeding results, it is worthwhile to form threat scenario
models, as to identify the different perspectives and their associated risks/concerns that will
be assessed.

Table 1 - Threat model matrix

Threat

TS0 TS1 TS2 TS3

- Physical
(proximal)

Remote
(proximal)

Remote
(distal)

C
on

ce
rn

 Physical Access ✓ ✓
Remote Access ✓ ✓ ✓

Data Ownership ✓
Data Visibility ✓ ✓ ✓ ✓

Table 1 above forms an overview of the four threat scenarios analysed in this thesis.

In TS0, we analyse the implications of data visibility and data ownership in a scenario devoid
of any malicious threat. This scenario is akin to a product owner who is wary of other parties
holding data pertaining to them and wishes to seek transparency in the type and storage of data
retained. The scenario additionally extends to a product owner who wishes to maximise the
functionality of a device that they purchase and own – such as through improvements or various
modifications.

In TS1, we assess the threat implications from parties who are within physical proximity of the
device. This includes parties as part of the supply chain, second-hand sellers, and individuals
who have either momentary, or prolonged physical access to the device. Concerns are raised
regarding parties being able to data from the device or regaining control of the device after
losing physical access.

In TS2, we inspect the ability for a remote party to monitor device communications, or
otherwise gain control over a device, without needing physical access to the device at any time.
Specifically, the remote party is nearby / within proximity of the device (either within wireless
range or connected to a shared computer network).

In TS3, we analyse possibility and implications for a remote party to access the device, either
through means of a backdoor (possibly planted from TS1 / TS2), or through the vendor’s system
themselves. We also assess the ramifications of gaining remote access to an internet-connected
sensor-enabled device, however it should be noted that the scope of this thesis excludes the
propagation of data in the cloud once received by the vendor.

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

10

Chapter 5 | Work Performed

Scope and Summary of Work

We begin our work by first defining the scope and extent to which the privacy and security
assessment will be performed.

In investigating privacy concerns, we monitor the nature of wireless network activity from a
powered off factory-reset Roborock S6 vacuum cleaner when where we pair (initialise),
operate, and let the device idle. We observe the device’s behaviour and interaction to other
devices on the same wireless network (LAN), as well as its communications to external servers
(WAN). This is performed as to better understand the nature of network communications, such
as data frequency, duration, size, destination, and content.

In investigating security concerns, we analyse the behaviour and configuration of the system,
and identify points of potential compromise or modification that may allow a third-party to
gain control of the device, or otherwise render the device insecure. We additionally compare a
baseline version of the device firmware to its most recent (April 2022) as to draw insights into
how the manufacturer (Roborock) has responded to both the security of the device, and the
privacy of the user.

Whilst work and discussions may reference topics from the following: smartphone application
communications and interactivity, internal cloud functionality and cloud endpoint
vulnerabilities, and the propagation of cloud data - they are beyond the scope of assessment
and were performed out of interest, or as aides to other discussion.

Throughout the course of investigation, findings relating privacy and security were not
mutually exclusive, and often involved a discussion of both areas. As such, this chapter will be
subdivided by work categories, and only briefly overview implications. Detailed privacy and
security discussions will follow in the Discussions chapter.

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

11

Preliminary Device Access

Figure 1 - UART pin locations

As discovered by Giese (2019), the Roborock S6 vacuum cleaner contains circuit board test
pads that correspond to the Allwinner R16 SoC’s configured serial pins, as seen above.
In detail, TPA8 is the device’s TX pin, TPA15 is the device’s RX pin, and TPA16 is ground.
A USB to UART adapter can then be used to gain access to the serial interface

Once a serial connection was established (baud rate = 115200), functionality in the U-Boot
bootloader firmware can be exploited to enter the bootloader’s shell mode, by means of sending
multiple ‘s’ characters to interrupt the boot sequence9. Within the shell, Giese documented a
series of instructions to extract the root password from a file called vinda, located inside the
device’s eMMC flash. This file contained a 16-byte string, which when XOR’d with the byte
0x37, results in the root password used to gain access to the device. It is noted that root shell
access is obtainable without requiring the root password, however it is beneficial.

Table 2 - Root password extraction procedure

Step Command Description

1 ext4load mmc 2:6 0 vinda Load contents of vinda into memory position 0

2 md 0 4 Dump the first 4 words from memory position 0

3 ------------------------ XOR values with 0x37

Figure 2 - Password decryption of the vinda file

9 https://github.com/allwinner-zh/bootloader/blob/master/u-boot-2011.09/board/sunxi/board_common.c#L843-
L847

https://github.com/allwinner-zh/bootloader/blob/master/u-boot-2011.09/board/sunxi/board_common.c#L843-L847
https://github.com/allwinner-zh/bootloader/blob/master/u-boot-2011.09/board/sunxi/board_common.c#L843-L847

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

12

Dynamic Firmware Analysis

Device Fingerprinting
Upon gaining access to the shell, device fingerprinting was performed as to better understand
the operating system, hardware feature set and software capability.

It is important to know that the device under test was manufactured in June 2020, one year after
the official release of the Roborock S6 vacuum cleaner in June 2019. As a result, the recovery
firmware (stored in mmcblk0p7) is versioned 01.15.58 (25th March 2020). All firmware
investigation processes and results collected in the proceeding sections were performed against
version 01.15.58, until the upgrade analysis section on page 2323.

Table 3 below outlines the various commands and outputs used to identify the system
information. Other necessary hardware information (such as storage and memory) is excluded
from the table as they are officially listed on the Roborock product webpage10. Most notably,
fingerprint results conclude that the system is running an ARM release of Ubuntu 14.04.3 LTS,
with libc version 2.19 (released 2014). This finding aided the installation and execution of other
software that was during the security and privacy assessment of the device under test.

Table 3 - v01.15.58 System Fingerprint
Command Output
uname -a Linux rockrobo 3.4.39 #1 SMP PREEMPT Wed Mar 25

20:47:59 CST 2020 armv7l armv7l armv7l GNU/Linux
ldd --version ldd ldd (Ubuntu EGLIBC 2.19-0ubuntu6.6) 2.19

cat /etc/os-release NAME="Ubuntu"
VERSION="14.04.3 LTS, Trusty Tahr"
ID=ubuntu
ID_LIKE=debian
PRETTY_NAME="Ubuntu 14.04.3 LTS"
VERSION_ID="14.04"
HOME_URL="http://www.ubuntu.com/"
SUPPORT_URL="http://help.ubuntu.com/"
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/"
ROBOROCK_VERSION=3.5.4_1558

cat /etc/OS_VERSION ro.product.device=MI1558_TANOS_MP_S2020032500REL_M3.
3.0_RELEASE_20200325-204847
ro.build.display.id=TANOS_MP_R16_RELEASE_20200325-
204847
ro.sys.cputype=R16.STM32.A3.G1
ro.build.version.release=1558
ro.build.date.utc=1585140527

10 https://global.roborock.com/pages/roborock-s6

https://global.roborock.com/pages/roborock-s6

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

13

Process Capability
An instance of htop - a process viewer utility11 - was loaded on to the device to monitor the
running processes as shown in Figure 3, and described in Table 4. Immediate observations
revealed that all non-system processes were executed under root-level privileges, which raises
device security concerns as a potential vulnerability in any of the executables may lead to
system takeover.

It should be noted that it is not uncommon for embedded Linux systems to run processes under
the root account during development as difficult IPC and communication port access issues
(e.g. udev rules) can be bypassed whilst the product is being developed. If process privileges
are not tightened for production or deployment releases however, vulnerabilities are formed
regarding least-privilege security principles.

Given the nature of the device running an ARM version of Ubuntu, the execution of foreign
binaries was tested successfully, confirming that there no software execution whitelist policies
present in the system.

Figure 3 - Process list (v01.15.58)

Table 4 - Important processes (v01.15.58)
Program Purpose
AppProxy Central management
RoboController Vacuum cleaner logic
rr_loader Sensor and cleaning driver
WatchDoge System health and process monitor
rrlogd Device log manager
rriot_tuya Tuya cloud communications bridge

11 https://github.com/htop-dev/htop

https://github.com/htop-dev/htop

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

14

Network Capability
A list of open ports and firewall rules were collected as shown in the figures below. Collected
results revealed that ports were exposed on tcp/6668 and tcp/22 (SSH), with the SSH server
listening to both IPv4 and IPv6 connections. As suggested in Figure 5, inbound IPv4
connections to the SSH server were dropped, however IPv6 connections were not (Figure 6).
In effect, efforts to prevent SSH access may have been undermined due to the lack of IPv6
access control restrictions.

To verify this hypothesis, the vacuum cleaner was connected to a wireless network serving
DHCPv6 leases from an Orange Pi R1 Plus device running OpenWRT (as the main network
infrastructure did not support IPv6 – see Test Infrastructure Setup). Results from ifconfig
refuted this theory, as the IPv6 address listed was prefixed with fe80::, which hints that the
device did not request for a DHCPv6 lease – hence no IPv6 address was assigned to the device,
rending the device unreachable via IPv6.

Figure 4 - netstat (v01.15.58)

Figure 5 - iptables (v01.15.58)

Figure 6 - ip6tables (v01.15.58)

Figure 7 - ifconfig (v01.15.58)

https://openwrt.org/

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

15

User Enumeration
No novel information was extracted from the /etc/passwd and /etc/shadow files, however
it was confirmed that the password hash in the /etc/shadow file matched the root password
located in the vinda file, as demonstrated in Figure 10. Upon inspection of /etc/passwd~
file (a backup version of /etc/passwd), existence of a user called ruby was discovered with
a home path set to /home/ruby, which existed as a blank directory in the file system - likely
being a remnant from a previous firmware version.

Figure 8 - /etc/passwd (v01.15.58)

Figure 9 - /etc/shadow (v01.15.58)

Figure 10 - Generated SHA512 password hash

Power Analysis
A power analysis was performed to determine how to charge the device’s battery without
requiring the charging dock’s charging contacts, as it was difficult to keep the device in contact
whilst performing other tests. Figure 11 illustrates the disassembly of the charging dock, which
reveals the power leads that connect to the charging contacts. Measurement of the charging
terminal voltages whilst loaded and unloaded revealed that dock’s charge controller outputs
~4.2VDC when there is no vacuum connected, and ~20.4VDC when the vacuum is loaded
(with an equivalent resistance of 3.7 kΩ)

It was noted that when the 4-wire battery was connected to the device with only the supply
leads (+ve and -ve), the device would fail to remain powered on and shutdown after
approximately 20 seconds, likely as a fail-safe mechanism as shown in Figure 12.

Figure 11 - Underside of the charging dock

Figure 12 - 2-wire battery shutdown log

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

16

Data Persistence
Temporary files were created in every directory of the filesystem as to investigate which file
paths were untouched during the firmware upgrade, factory reset, and device disassociation
(unpair the device via the smartphone application) procedures.

Table 5 - Untouched directories during volatile actions

Firmware Upgrade Factory Reset Disassociation
(mmcblk0p11) /mnt/reserve (mmcblk0p11) /mnt/reserve ALL

(mmcblk0p1) /mnt/data

Where results for upgrade persistence and reset persistence were sensible, the results from
device disassociation were alarming, as no data was removed from the device even after the
device was deleted from the user’s account. Whilst it could be assumed that device
disassociation was then followed by an immediate re-pair process by the same party, failure to
follow this flow could potentially lead to PII and UGC being shared to another party if an
unpaired device was given away.

Whilst statistical and calibration data (mmcblk0p11) are retained during firmware upgrades
and factory resets, it can be noted from Figure 13 that user data (mmcblk0p1) and system
partitions are securely wiped (block-writes rather than just files being unlinked in the partition)
during the factory reset procedure, preventing data recovery tools like photorec12 from
recovering data.

Figure 13 - Serial log during factory reset

12 https://www.cgsecurity.org/wiki/PhotoRec

https://www.cgsecurity.org/wiki/PhotoRec

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

17

Static Firmware Analysis

Firmware Extraction and Layout
To statically analyse the firmware of the device (as to provide a ‘offline’ access to the device’s
system), a firmware dump was created with the dd utility via SSH. It is noted that the device
had firewall rules in place which needed to be bypassed prior to connecting (as later explained).
Following the commands from Figure 14, a set of eMMC partition dumps were created, which
have been tabulated as shown in Table 6.

Figure 14 - Firmware dump commands

Table 6 – Firmware partition mapping

Partition Label Size Mount Point Description
1 UDISK 1.5 GB /mnt/data User data
2 boot-res 8 MB Bootloader resources
3 - 1 KB (unknown)
4 - - - (does not exist)
5 env 16 MB Boot environment
6 app 64 MB /mnt/default Device data (read only)
7 recovery 512 MB Stock firmware
8 system_a 512 MB / Firmware A
9 system_b 512 MB / Firmware B

10 download 528 MB /mnt/updbuf Firmware update storage
11 reserve 16 MB /mnt/reserve Device statistics

The UDISK partition contains UGC pertaining to map and cleaning data, in addition to device
logs and device configurations (such as sound settings, clean scheduling, network settings).

The device contains two copies of the operating system firmware, labelled system_a and
system_b. If the system fails to boot properly, a hardware watchdog will restart the device,
and boot into the other partition. Should both partitions result in a failed boot, or a firmware
reset is performed, the contents of the recovery partition (an old stock firmware version) will
be flashed onto both system_a and system_b. It is noticed that the recovery partition is
modifiable.

The reserve partition contains statistical data (officially termed a ‘blackbox’) storing the
total number of cleans performed, bumper sensor clicks, hardware information, and error log
events. The file structure of this partition is displayed in
Figure 15 on the following page.

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

18

mmcblk0p11 (reserve)

| anonymousid1

| blackbox.db

| CompassBumper.cfg

| counter

| endpoint.bin

| hwinfo

| lds_calibration.txt

| mcu_ready

| RoboController.cfg

| rrBkBox.csv

+---rriot

| tuya.json

| try

Figure 15 – File structure of mmcblk0p11

Commentree

 github.com/featherbear/commentree

A documentation tool was created and developed for this thesis to better mark important
regions and annotate lines of plain-text files in the device firmware, which served beneficial in
reviewing and analysing text content between research sessions. This tool was used to review
and mark the configuration files and logs stored on the device’s filesystem, and additionally
provided portability when performing research on different machines. A prototype version is
available on GitHub, with plans to improve and complete it in the future.

Figure 16 - Screenshot of the Commentree tool

https://github.com/featherbear/commentree
https://github.com/featherbear/commentree

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

19

Stock Ubuntu Comparison
As system reconnaissance (see Device Fingerprinting) indicated that Ubuntu 14.04.3 LTS was
used as the firmware’s base image13, altered or modified binaries (such as one that has additional
features or possible malicious functionality) could be identified through comparing the version in
the base image against the device’s version. A byte-level MD5 hash comparison was performed
for programs in the /bin, /sbin, /usr/bin, and /usr/sbin directories.

Results concluded that except for one program, all binaries completely matched the base
image’s version, which indicates no sign of alteration or modification to existing programs.
The binary whose MD5 hash differed14, ntpdate, is responsible for retrieval and updating of
the device’s time from a time server. When performing a function-level binary comparison
with BinDiff (as proposed by Costin, Zaddach et al. (2014)), a low similarity ratio of 0.36
was produced as shown in Figure 17 – indicating a large change in program functionality.

Further binary analysis and cross-examination of the assembly call graphs however revealed
that the version of ntpdate on the device was only a stripped build of the base version
(4.2.6p5@1.2349-o), built without public key cryptography support (provided by OpenSSL).

Figure 17 – BinDiff comparison of ntpdate (v01.15.58)

It was also noted that alongside the added vendor software in /opt/rockrobo, the firmware
image contained the additional packages rsync, ccrypt, and tcpdump, however rsync and
tcpdump had no usage calls in any program (as of version firmware 01.15.58).

Figure 18 – apt-get history.log file

13 http://cdimage.ubuntu.com/ubuntu-base/releases/14.04/release/ubuntu-base-14.04.3-core-armhf.tar.gz
14 base md5: 122890cbbaff8ca98f9664add64492bd | device md5: 006a0967281c9a061362086b638a21a4

http://cdimage.ubuntu.com/ubuntu-base/releases/14.04/release/ubuntu-base-14.04.3-core-armhf.tar.gz

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

20

ADB
ADB, short for Android Debugging Bridge, is a development and utility tool to communicate
with an Android device, or any device that implements the server functionality. This tool allows
for the management and transfer of files, installation of applications (on an Android device),
and access to the device’s shell. In the Roborock S6’s firmware there is a custom version of
the adbd binary that serves communications (via FunctionFS15) from the micro USB port
located at the top of the vacuum cleaner, as visualised below.

Figure 19 – Exposed micro USB connector on the Roborock S6

The binary has additional functionality to perform system tests (the uart_test command)
and flashing of the device (the ruby_flash command) without requiring the disassembly of
the device to gain access to the programming pins or test pads.

Figure 20 – Custom adbd auth challenge flow

Access to the ADB interface is restricted however, as a dynamic challenge / response auth
process is required to issue adb shell commands. The authentication flow summarised in
Figure 20 is as follows:

1. The user requests the challenge token, providing the 16-byte vinda password, followed by
‘rockrobo dynamickey’

2. The user generates the response16 based off the challenge token and the device’s ID
3. The user issues a command, providing the vinda password string, the response token,

and the command they want to execute

15 https://www.kernel.org/doc/Documentation/usb/functionfs.txt
16 https://featherbear.cc/UNSW-CSE-Thesis/posts/execs/usr-bin-adbd/#challenge-response-generation

https://www.kernel.org/doc/Documentation/usb/functionfs.txt
https://featherbear.cc/UNSW-CSE-Thesis/posts/execs/usr-bin-adbd/#challenge-response-generation

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

21

If the auth challenge succeeds, further custom access control implementations restrict the
commands that can be executed, based off a value of a property named adb_lock in the read-
only /mnt/default/adb.conf file. It is noted that the execution of any arbitrary command
is only possible when the value is set to 0, however this is never possible as the adbd binary
will reset the value to 1, as shown in the assembly call graph below.

Figure 21 – adbd lock reset flow

A novel command injection vulnerability was discovered in the adbd binary which subverted
the access restrictions, allowing any arbitrary command to be executed regardless of the current
access level. Whilst the ampersand (&), semicolon (;), pipe (|) and backtick (`) characters are
sanitised from the command string to prevent command chaining, failure to filter out the dollar
sign ($) character allows for command expansion to be performed via the following command.

adb shell [SYS_PASSWD][ADB_PASSWD] uart_test $(COMMAND)

A proof of concept has been made available17. This vulnerability additionally exploits the fact
that the uart_test command actually spawns a /bin/sh shell via a libc system library
function call, which supports command expansions. Arbitrary command execution is obtained,
as demonstrated by the proof of concept below. This exploit could be used to exfiltrate data
from the system (such as map data and wireless credentials), write to the filesystem, or possibly
gain SSH access (as later explained).

Figure 22 – adbd command injection vulnerability PoC

It is worthwhile to state the limitations of this exploit, as its success relies on the knowledge of
the contents of the vinda file, and the device ID. Whilst the device ID is easily obtainable via
viewing the USB device information, gaining access to the vinda file is non-trivial, and
requires either the disassembly of the device to access the UART pins, or via another exploit.

Nevertheless, whilst this novel exploit does not provide a means to instantly gain control over
a device, it provides a post-exploitation method to easily interface with the device over USB,
should SSH or serial connections become inaccessible.

17 https://featherbear.cc/UNSW-CSE-Thesis/poc/

https://featherbear.cc/UNSW-CSE-Thesis/poc/

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

22

Device Logs (rrlogd)
The rrlogd binary is responsible for the management, rotation and uploading of logs to the
Xiaomi File Data Service server18 (as determined by the device’s manufacture release).

Through both static analysis of the binary, and dynamic analysis of the filesystem, the
following categories of log data was observed: application logs relating to vacuum cleaning
functionality, application configuration, mapping data19, firmware upgrade logs, device
hardware information, system lifecycle logs, running processes, network information and
cleaning statistics. Newer versions of rrlogd (i.e. in the v02.29.02 firmware) also include the
ability to upload network captures, as later explained (see Network Capture).

Before the logs are upload, they are compressed and encrypted with RSA + AES, as evident in
Figure 23. Log files (see Appendix 1) are primarily sourced from the following directories:
• /mnt/data/rockrobo/rrlog/
• /dev/shm/
• /mnt/reserve/

Figure 23 - Disassembly of the encryption routine in rrlogd (v01.15.58)

Figure 24 – iptables allow rule in rrlogd (v01.15.58)

It was curiously noted that rrlogd implemented functionality to potentially unblock inbound
SSH connections depending on the device model. However the specific DUT (Roborock S6)
would not satisfy the required conditions and so was unaffected.

18 http://docs.api.xiaomi.com/en/fds/
19 Determined to be stored as in the RRMapFile format.
See https://github.com/marcelrv/XiaomiRobotVacuumProtocol/blob/master/RRMapFile/RRFileFormat.md

http://docs.api.xiaomi.com/en/fds/
https://github.com/marcelrv/XiaomiRobotVacuumProtocol/blob/master/RRMapFile/RRFileFormat.md

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

23

Upgrade Analysis (Version 02.29.02)

Whilst upgrades are a means to add additional features or improve the performance of existing
functions, upgrades additionally assess a company’s response to security vulnerabilities and
privacy concerns. It is rather uncommon for vendors to include internal system changes, or
detailed security notes in upgrade changelogs as this information will not be of any use to
common end-users. Independent research must therefore be performed to produce a system
changelog that addresses security and/or privacy concerns.

The DUT was upgraded from v01.15.58 (25th March 2020) to v02.29.02 (28th April 2022), with
firmware images being dumped between the incremental upgrades. Static firmware analysis
was then performed to compare the changes in the filesystem between versions and has been
collated in the table below. In this section of the thesis, the base firmware (v01.15.58) will be
compared against the latest version (v02.29.02) to best discern Roborock’s response to security
and privacy concerns throughout the product’s life.

Table 7 – Firmware upgrade changelog
Firmware Official Changelog Unofficial System Changelog
01.17.08
(17th April 2020)

• Supports multi-floor map saving and
robot knows which floor it is

• Update to new structured SLAM
algorithm to make map more reliable

• Support customised room cleaning
sequence

• Support no-mop zone

• iptables enforcement to drop SSH
• rrlogd
• WatchDoge

• Utilities change to busybox
• SSH server changed to dropbear
• rriot_rr added (but not enabled)

01.19.98
(9th June 2020)

• Improvised Wi-Fi Easy Connect
• Overall improvements
• Bug fixes
• UX fixes

• Serial handler changed to rr_login

01.20.76
(23rd June 2020)

• Obstacle avoidance enhancements
• Bug fixes and UI optimisation

-

… … …
02.29.02
(28th April 2022)

• Optimized the quick mapping
experience

• rriot_rr enabled

Firmware Images
A security assessment of the firmware upgrade procedure was beyond the scope of this thesis,
however it is worthwhile to mention that upgrade packages are encrypted, as observed when
intercepted upgrade packages were not trivially extractable. Brief analysis of the SysUpdate
binary indicate that packages are additionally signed to prevent unauthorised firmware upgrade
files. Whilst a subroutine (as annotated below) indicates that files may be encrypted with
ccrypt, this routine is deprecated given that ccrypt is removed in later firmware versions.

Figure 25 – Obsolete decryption routine in SysUpdate

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

24

Broad System Changes
A filesystem comparison between the base firmware and latest firmware revealed a system
migration towards an embedded system design, where functionality is stripped and unused
tools are removed from the firmware. In comparison to the base firmware (10680 files totalling
242 MB), a 60% reduction in filesystem size was observed (1976 files totalling 98 MB).

Most noticeably, many utilities were replaced with a stripped-back busybox distribution
(v1.24.1), commonly used in embedded Linux systems to decrease firmware image size.
Ubuntu-like and Debian-like files and folder structures (including the apt-get and dpkg
package managers) were additionally removed in later firmware versions. Whilst the removal
of package managers does not prevent foreign binaries from being loaded and executed, it does
significantly increase the time required to execute foreign binaries.

It was also noted that the rsync and ccrypt binaries previously found in base firmware were
removed, however the added tcpdump package remained.

MD5 hashes were calculated for the binaries in the latest firmware and were compared against
the base firmware (see Stock Ubuntu Comparison) to determine if files were changed. All
shared binaries (ignoring programs replaced with busybox) in the /bin, /sbin and
/usr/sbin directories matched, indicating that no changes exist. Whilst some binaries in the
/usr/bin directory were modified, functional analysis comparisons concluded that only
performance changes were made.

We now outline the non-trivial changes noticed between the base firmware and latest firmware.

IPv6 Routing
As previously assessed during the dynamic firmware analysis of the Roborock S6 (see Network
Capability), no ip6tables rules were applied in the base firmware – however as the device
did not request nor assign itself an IPv6 address (other than its link-local address), access to
exposed ports on the device via IPv6 were denied. Despite the device being unreachable via
IPv6, newer firmware versions explicitly prevent IPv6 traffic (in both directions) by enforcing
DROP rules to all network chains, as shown in the program output below.

Figure 26 – ip6tables results (v02.29.02)

Authentication Flow Modification
In the base firmware, device authentication from a terminal interface (such as through SSH or
serial) was managed through the standard pam_unix.so module, which would utilise the
authentication information within the /etc/passwd and /etc/shadow files. It was noted
that the root password was identical to the decrypted value of the vinda file contents in the
device data partition (see Firmware Extraction and Layout).

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

25

Newer firmware versions (as of firmware version 01.19.98, released 9th June 2020) however
no longer use the standard module to authenticate login requests, and instead use a custom
authentication routine called verify_shadow located in the vendor’s libuart_api.so
library. As visible in the disassembly below, the presence of a /mnt/default/shadow file
is noted – whose purpose likely mirrors the /etc/shadow file (to store password hashes). The
presence of /mnt/default/shadow.sign is also noted, used in an RSA signature check to
verify the integrity of /mnt/default/shadow. It is inferred that modification to the root
password is difficult without knowledge of the RSA key used to perform the signature signing.

This authentication flow modification does not apply to all authentication interfaces on the
system, as the /bin/login and su binaries still utilise the standard Unix authentication. Only
programs which specifically use the libuart_api.so library (i.e. vendor software) are
affected by this authentication flow modification.

Figure 27 – verify_shadow function routine

The DUT specifically used during this thesis however did not contain the shadow or
shadow.sign file, likely due to the authentication flow changes not yet propagating through
the manufacture and initial device flashing process. Consequently all authentication methods
in firmware versions which utilised the verify_shadow routine (serial, SSH, ADB) would
always fail, as the missing files would trigger early exit conditions.

It is noted that the manufacture date (June 2020) of the Roborock S6 vacuum cleaner
specifically used during the thesis was unideal, as it coincides with the release month of
firmware version 01.19.98, where this authentication flow modification was implemented. This
raises uncertainty regarding how the vendor may have modified the filesystem. As the base
firmware was versioned in March, it is assumed that the DUT has the filesystem structure of a
device manufactured prior to June, and hence prior to the authentication flow modification.

It would be possible to patch the libuart_api.so binary to always return a successful
verification result, however this was not tested as it would require greater effort as compared
to other trivial methods to gain access.

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

26

Serial Access
Later firmware versions replaced the original serial handler /sbin/getty with a custom
implementation named rr_login. Similar to the patched SSH interface, this binary restricted
serial access (see Appendix 2) to only the root user, and utilised the verify_shadow
authentication flow - which would always fail with the DUT.

As consequence to the serial login always failing because of the missing shadow and
shadow.sign files, the following steps were developed to regain access to the console by
replacing the serial handler in the /etc/inittab file (see Figure 28).

1. Boot into the u-boot debug shell by sending ‘s’
2. Overwrite the init entry point to start /bin/bash

▪ setenv setargs_mmc ${setargs_mmc} init=/bin/bash
3. Resume system boot with the boot command
4. Disable the hardware watchdog

▪ echo V > /dev/watchdog

5. Edit the /etc/inittab file
▪ Remove ::respawn:/sbin/rr_login -d /dev/ttyS0 -b 115200 -p vt100
▪ Append ttyS0::respawn:/bin/login

6. Reboot the system with the reboot command

Figure 28 – SysV configuration script (v02.29.02)

Upon modification of /etc/inittab, serial access was restored allowing access to the device
with the original root password.

SSH Access
In the base firmware, a stock OpenSSH server was exposed on tcp/22 on both IPv4 and IPv6
addresses (albeit no IPv6 connection was able to be established), the upgraded firmware
revealed that the SSH server was replaced with dropbear (v2013.60), a compact SSH server
that is commonly used in embedded Linux system. Notably, this dropbear binary was
modified to limit access solely to the root user and implemented the aforementioned
verify_shadow authentication flow. The standard Unix authentication flow can be restored
by replacing the dropbear binary with a stock or alternate server binary.

It was also noted that the dropbear binary only offers two legacy key exchange algorithms,
diffie-hellman-group1-sha1 and diffie-hellman-group14-sha1, both which are
considered to be weak by modern cryptography standards and may be vulnerable to the attacks
like Logjam (Adrian, Bhargavan et al. 2015).

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

27

A binary analysis of the WatchDoge and rrlogd binaries in the latest firmware reveal that
extra functionality was implemented to further enforce SSH access restrictions (as previously
established in the Network Capability section), as evident in Figure 29, where the very first
functional instruction was to call iptables -I INPUT -j DROP -p tcp --dport 22.

Figure 29 – WatchDoge process enforcing iptables

Network Capture
Static analysis of the updated rrlogd binary in the latest firmware revealed new IPC signal
handling behaviour. When the MSG_LOG_DEBUG_ENABLE signal was received, a function in
the wlanmgr process is called, whose behaviour is as described below.

Table 8 – wlanmgr routine 0x136e8 (v02.29.02)
Signal Action Description

0 rm -rf /mnt/data/debug Delete debug files

1 tcpdump -i any -s 0 -C %lu
-W %d -Z root -w %s/%s/%s &

Perform packet capture

2 killall tcpdump Stop packet capture

3 /opt/rockrobo/wlan/
wifi_debug_collect.sh

Collect other network information

Most notably, the wlanmgr process was observed to be able to create network packet captures
via tcpdump. When rrlogd receives the MSG_LOG_DEBUG_UPLOAD_DATA signal, the packet
capture dump along with other files (as referenced by the wlan_debug_collect.sh script)
are uploaded to the log servers. The table below details the content of uploaded data.

Table 9 – Collected network data (v02.29.02)
Filename Source Description
resolv.conf /etc/resolv.conf DNS nameserver configuration
netstat.txt netstat -anp List of all sockets and related processes
ifconfig.txt ifconfig Overview of network interfaces
network_packet.pcap (wlanmgr) Packet captures

As the network packet capture is performed using tcpdump, only TCP packets are captured
within the dump file, and does not include any UDP traffic. It should also be noted that the
visibility of network traffic is limited to the traffic broadcasted by the access point, as only a
passive network capture is performed.

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

28

Network Activity Analysis

This section covers the security and privacy assessments pertaining to network traffic and
device communications. Network packet captures were performed during the research period,
capturing network activity during the following scenarios and events:

• Device is uninitialised – Perform pairing and initial setup
• Device is initialised – Perform cleaning
• Device is initialised – Perform firmware upgrade
• Device is initialised – Device idle

Test Infrastructure Setup

Figure 30 - Isolated network connection diagram

Table 10 - Network equipment list
Label Device Purpose
Vacuum Cleaner Roborock S6 (Device Under Test)
Dummy Device Lenovo M93p Tiny Simulate network traffic
Access Point Ubiquiti UniFi UAP Provide Wi-Fi connectivity
Network Switch TP-Link TL-SG105E Network expansion, port mirror
Capture Sink Mac Mini Port mirror
Router Routerboard RB1200 Network gateway

An isolated network (disconnected from personal devices) was set up to securely monitor the
network traffic of the vacuum cleaner without external influences. The Roborock S6 vacuum
cleaner was connected to a WPA2-PSK secured wireless network (via the access point), and
network activity was port-mirrored to a capture sink for packet capturing purposes.

Port-mirroring is a network observability function to copy network traffic flowing through a
switched port to another port, often to allow for the transparent monitoring of data without
requiring a physical network tap. Given the nature of network switches only forwarding data
to the required destination port (compared to a network hub which broadcasts data to all
connected ports/clients), port mirroring allows for the traffic of the wireless access point (and
consequently the vacuum cleaner) to be monitored. As access points function as network hubs,
the port-mirroring of the access point effectively provides a means to view all the packets that
the vacuum cleaner itself can see.

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

29

Due to the port mirroring functionality limitations specific to the network switch used during
this thesis (TP-Link TL-SG105E), modifications to the capture sink’s NIC required to only
permit unidirectional data transmission from the switch to the capture sink, as to effectively
disconnect the capture sink from the network whilst still receiving port mirrored traffic.

As the device may exhibit different behaviour under a sterile environment (no other devices
connected that produce network activity), a “dummy device” was connected to the same
wireless network to simulate common traffic with the nping utility.

Packet captures were performed in several batches over several months under the previously
mentioned test scenarios, with most captures being performed whilst the device was idle - as it
would best reveal any network activity patterns. Packet captures were performed on both
firmware versions 01.15.58 and 02.29.02.

Data Transparency Preparation
Given the encrypted nature of network communications present on the device, steps must be
taken to decrypt or otherwise transparently observe the encapsulated payload or message.
Before exploring the actions taken in this thesis to meaningfully observe the network traffic,
we first overview common issues faced by developers and other security professionals when
dealing with analysis of encrypted network traffic.

Table 11 – Comparison of data transparency methods

SSLKEY
LOGFILE

MITM
(e.g. Burp Suite) Frida Manual

Patching
(Straight-forward) System-level
configuration possible ✓ ✓

Always respected by application ✓ ✓

Non-HTTP TCP traffic support ✓ ✓ ✓

UDP traffic support ✓ ✓

Application-level crypto support ✓ ✓

Requires access to the binary ✓ ✓

Difficulty Easy Medium Hard Even Harder

Certain programs and web browser such as Firefox and Chrome implement a development
feature where SSL / TLS session secrets can be stored in a file (via the SSLKEYLOGFILE
environment variable20). This file can then be used to aid packet capture analysis tools such as
Wireshark to decrypt encrypted SSL / TLS sessions, and consequently view the unencrypted
payloads. Whilst seemingly useful, this method is not protocol agnostic and can only be used
to decrypt website traffic.

Embedded systems such as the Roborock S6 may include software that do not communicate
over HTTP(S) – in fact this is often the case as the adoption of MQTT or custom protocols are
becoming more prevalent in IoT systems (Mishra and Kertesz 2020). There is also no guarantee
that all applications will respect the presence of the SSLKEYLOGFILE variable.

20 https://firefox-source-docs.mozilla.org/security/nss/legacy/key_log_format/index.html

https://firefox-source-docs.mozilla.org/security/nss/legacy/key_log_format/index.html

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

30

As observed during the static firmware analysis, binaries of the DUT implement application-
level encryption, and hence do not rely on SSL / TLS encryption to secure communications.
Even if SSL / TLS encryption could be stripped, this method does not provide any means to
decrypt application-level encryption. This limitation also exists in MITM solutions such as
Burp Suite, mitmproxy and other associated utilities21 that only aid in SSL / TLS decryption.

Dynamic instrumentation frameworks like Frida22 exist to solve the inability to decrypt
application-level encryption, by instead hooking into the program’s function calls. Through
function hooking, unencrypted payloads can be obtained by intercepting the pre-encryption
and post-decryption stages. The utilisation of Frida was not pursued due during the thesis due
to initial technical issues and time constraints.

The modifiable nature of binary files in the filesystem instead allowed for the injection of
crafted ARM assembly code that relayed the pre-encrypted / post-decrypted payloads over the
network to an arbitrarily defined address 10.251.252.253:28422 (UDP), as seen in the figure
below. By transmitting the payload data over the network, payloads were also captured in the
packet capture, which consequently simplified the process of correlating network traffic.

Figure 31 - Crypto function hook source code

It was also noted that certain encrypted traffic (such as the upload of log data) could be studied
by simply viewing the underlying log files within the filesystem.

Overview of Network Endpoints
The table below summarises the endpoints that the Roborock S6 vacuum cleaner connects to
and is provided to give context to the upcoming observations and results.

Table 12 – Overview of network endpoints

Endpoint Protocol Description Used in
01.15.58

Used in
02.29.02

ms.tuyaeu.com MQTT Inbound requests ✓

m2.tuyaeu.com MQTT Inbound requests ✓

a2.tuyaeu.com HTTPS Outbound requests ✓ ✓

awsde0.fds.api.xiaomi.com FDS23 Logs upload ✓ ✓

xx.ot.io.mi.com HTTP (unknown) ✓

xx.ott.io.mi.com HTTP (unknown) ✓

21 Tools exist to strip HSTS certificate pinning mechanisms, that would otherwise prevent MITM techniques.
See https://github.com/shroudedcode/apk-mitm
22 https://frida.re/
23 http://docs.api.xiaomi.com/en/fds/

https://portswigger.net/burp
https://mitmproxy.org/
https://github.com/shroudedcode/apk-mitm
http://docs.api.xiaomi.com/en/fds/

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

31

Figure 32 below visualises the nature of dataflows between the device and external endpoints
and displays the inter-process communication flow between relevant processes on the device.

Figure 32 – Network communication diagram

Network Content Analysis
Exploration
The MQTT servers (m2.tuyaeu.com, ms.tuyaeu.com) are responsible for the requests sent
by the server to the device, such as status checks and queries for device settings. Commands
sent by the smartphone companion application to remotely navigate the Roborock S6 are also
delivered through the MQTT protocol (as labelled by the app_rc_move request). Payloads are
packed as JSON for both requests and replies.

The a2.tuyaeu.com endpoint is responsible for requests initiated by the device and set to the
server. These requests include firmware update checks and configuration update polls and are
also packed in the JSON format.

As previously mentioned in the static analysis of the Device Logs (rrlogd binary and further
explored during its upgrade analysis, logs are compressed and secured with RSA + AES before
being uploaded to the Xiaomi File Storage Service (FDS) server
(awsde0.fds.api.xiaomi.com). These logs included application config and runtime data,
device data, system lifecycle data, cleaning statistics and network capture data (as seen in
v02.29.02).

In version 01.15.58 of the device firmware, HTTP GET requests were issued to the
xx.ot.io.mi.com and xx.ott.io.mi.com endpoints, however these endpoints appear to
be deactivated as they produced no meaningful response (HTTP Error 400).

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

32

Privacy Policy Violation

Figure 33 – Privacy policy excerpt

As shown in Figure 33, the privacy policy (effective 30th April 2019) for vacuum cleaner data
in the Android version of Roborock’s smartphone application (app version 3.2.48) states that
the “password […] is only stored on the device” – however the screenshot below showing
contents of the uploaded rriot_tuya.log file contradict the statement. Despite firmware
version 02.29.02 being released 28th April 2022, the wireless network name and password are
clearly visible within the log file.

It was noted that whilst a newer dated privacy policy (12th November 2021) was found on the
vendor’s website24, the privacy policy scope only addressed ‘Email Subscriptions’ and not of
the privacy of data on, or of the vacuum cleaner.

Figure 34 – Exposure of wireless credentials in rriot_tuya.log

(FW: v02.29.02)

24 https://global.roborock.com/pages/privacy-policy

https://global.roborock.com/pages/privacy-policy

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

33

Pairing Traffic
When the Roborock S6 is uninitialised / factory-reset, the device enters Access Point mode,
and broadcasts an SSID named roborock-vacuum-s6_miapXXXX, where XXXX is replaced
with the last four characters of the device’s MAC address. The companion smartphone app will
then connect to this access point and send the configuration frames to continue the pairing
process. It was noted that the network was not secured with any passphrase, and consequently
has no WEP / WPA security protecting transmissions. External parties can easily monitor the
traffic of open networks, even without needing to join the network (given possession of a
wireless adapter that supports promiscuous monitoring).

Figure 35 - Plain-text credential transmission during pairing

Network activity captured during the device pairing action revealed that the JSON-encoded
configuration payload (containing the wireless credentials) was transmitted from the
smartphone application to the robot over plain-text, as visible in Figure 35. Here, the SSID
secureTM, and password password123 are visible to anyone monitoring the network traffic.
This observation of the plain-text transmission of wireless credentials violates the IoT
ecosystem’s official security guidelines (Tuya Smart 2020), which outline the requirement for
a product to “use AES encryption to transmit […] Wi-Fi information”, and is synonymous with
previous security and privacy studies on devices using the Tuya IoT ecosystem (Vtrust 2018).

Network Behaviour Analysis
Local Traffic
A high number of local traffic requests was observed being emitted by the DUT, albeit small
in volume (< 3MB). The following local network behaviour was observed:

• Every 5 minutes a DHCP lease request was issued by the device
• Every 5 seconds the rriot_tuya process issued a Tuya Discovery Packet

o Broadcast to udp/6667 containing the device identifier and IP address

Specifically for firmware v01.15.58, the following additional behaviour was observed:

• Every 5 minutes an SSDP poll was issued by the device
o This is an artifact of the operating system effectively running Ubuntu

• Every 10 seconds the miio_client process issued a request to xx.ott.io.mi.com
• Every second the miio_client process issued 2 requests to xx.ot.io.mi.com

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

34

External Traffic
The following traffic reports are based off network captures whilst the device was not in
operation (idle) to determine network behaviour patterns. External traffic is broken down by
endpoint to better characterise each individual process, and further broken down into hourly
segments with times labelled in reference to Australian Eastern Standard Time (GMT+10).

Inbound Requests (ms.tuyaeu.com / m2.tuyaeu.com)

Figure 36 – MQTT server data heatmap

Figure 37 – MQTT server historical overview

The network heatmap above indicates increased network activity around 3am every day,
however during these peaks, at most, only 300 KB of data was transferred. Application logs
from rriot_tuya reveal that the increased activity is a result of the program timing out and
reconnecting daily at 3am. A small packet was transmitted every minute; however, it was
determined to be an MQTT keep-alive packet.

Outbound Requests (a2.tuyaeu.com)

Figure 38 – Control server data heatmap

The rriot_tuya process exhibits more behaviour when communicating to the control server,
evident in the increased dataflow counts in the figure above. Whilst increased dataflow is
observed, total average hourly bandwidth does not exceed 10 KB, with peak hourly
consumption of 20 KB at 3am every day. It was observed that a tuya.device.timer.count
request was emitted every 25 minutes likely as an uptime poll, which aids in explaining the
above heatmap. When the device reconnects to the MQTT server at 3am, upgrade checks and
configuration polls are emitted, explaining the coincident activity.

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

35

Logs (awsde0.fds.api.xiaomi.com)

Figure 39 – FDS server data heatmap

Figure 40 – FDS server flow graph

Inspection of the rrlogd process revealed that it did not transmit nor receive data from the
FDS server unless logs were being uploaded. The behaviour of somewhat regular network
activity (as visible in the 2022-07-06 to 2022-07-11 timeframe) can be attributed to the log
sizes growing and reaching the threshold limit which triggers the logs to be uploaded. Likewise,
when the MQTT connection is re-established, the increased log activity triggers logs to be
uploaded, hence why all services incur increased activity at 3am. It was noted that the FDS
servers which the device uploaded logs to were situated in Germany and the United States as
visualised in Figure 41 below.

Figure 41 – Geomap of device activity to Xiaomi FDS servers

Device Docking
It was noted that network activity (both flow count and traffic volume) would increase when
the vacuum returned to the charging dock after cleaning, or when manually docked. This was
in accordance with a configuration parameter ONLY_UPLOAD_ONDOCK=1 found in the
rrlog.conf file.

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

36

Manufacturer Usage Description (RFC 8520)

Figure 42 – MUD usage diagram

Drafted in 2016, and published in 2019, the Manufacturer Usage Description (MUD)
specification provided mechanisms for a networked device to advertise its expected network
activity and behaviour. The supporting network infrastructure can then make use of this MUD
profile (as outlined in Figure 42) to determine whether certain network traffic should be
blocked or allowed at the switching level. For example – traffic emitted by a device to
example.com:8890/tcp can be dropped if the device’s MUD profile does not contain a
definition for traffic flow to example.com via tcp/8890 – which can potentially mitigate
foreign processes on a device from reaching out to the internet.

Whilst communication to distinct ports and hostnames can be controlled via RFC8520, there
is no ability to perform deep packet inspection – payloads sharing the same connection cannot
be differentiated. Consequently, this protocol can only be used to protect foreign and
unidentified traffic connections and should not be relied upon to protect a network or device
from all network threats (such as vendor C2, MITM and spoofing attempts).

As Roborock has not released MUD profiles for the Roborock S6, a set has been created
(Hamza, Ranathunga et al. 2018) from the network traffic captured from firmware versions
01.15.58 and 02.29.02; and is publicly offered25 to promote the adoption of RFC8520.
An excerpt of the generated MUD profile is provided in Figure 43.

Figure 43 – MUD profile snippet (v02.29.02)

25 https://featherbear.cc/UNSW-CSE-Thesis/mud

https://featherbear.cc/UNSW-CSE-Thesis/mud

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

37

Device Entry and Persistence Analysis

We now detail methods to grant local access to, remote access to, or otherwise root the
Roborock S6 vacuum cleaner to provide additional functionality and or capability. This section
covers the practical methods and building blocks that a malicious actor may use, however
discussions regarding security and privacy implications will be held until the chapter on
Discussions.

Table 13 below is provided to summarise the proceeding content.

Table 13 – Overview of device entry and access methods

 Serial
(UART)

USB
(ADB) SSH OTA

(MiIO) Backdoor

Requires vinda ✓
Requires Modifications ✓ ✓
Requires Physical Access ✓ ✓
Fortified✝ ✓ ✓ ✓ ✓

Upgrade Resistant# ✓

✝Fortified: as describing if the vendor has implemented changes over
the lifetime of the product to prevent or otherwise restrict access

#Upgrade resistant: as describing if an entry method will continue to
work immediately after an upgrade is performed

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

38

Device Entry
Serial (UART)
The device’s serial console (see Preliminary Device Access) is likely the first point of entry to
gain remote access. This method however requires physical access and disassembly of the
device, as the UART pins are located on the device’s circuit board located within the device.
Familiarity and the confidence to touch electrical circuits are also required, in addition to the
possession a serial device interface (i.e. a USB to UART adapter).

In newer firmware versions where rr_login is used as the serial handler, additional work
must be performed to gain root access, due to the verify_shadow authentication flow. After
the initial connection however, the serial handler can be modified to use the old /bin/login
handler, which utilises the old Unix authentication method.

USB (ADB)
As mentioned previously (see ADB), access to the device via the ADB port is restricted due a
custom authentication challenge, and further access restrictions even after authentication.
Where the proposed novel exploit can be performed to remotely execute commands, an
alternate method exists where the custom adbd is simply replaced with a fully functional
version, bypassing all added authentication stages. The exploit method however remains
resilient to upgrades (until patched by the vendor).

Whilst access to the ADB port is simple and quick (the micro USB port is located underneath
the removable lid of the device, both methods (command injection, binary replacement) require
prior access to the device – to either gain knowledge of the vinda content, or to access a shell.

SSH
In legacy firmware versions, the rrwatchdoge.conf configuration file could be modified to
nullify the offendin iptables command, as shown in Figure 44. However, in newer firmware
versions where the modified dropbear SSH server is used, the iptables drop command is
present in multiple locations (S04wdgenv, WatchDoge, rrwatchdoge.conf, rrlogd) and
consequently each file must be patched to permit SSH access. In patching the WatchDoge and
rrlogd binaries, calls can be simply nullified by replacing the instructions with NOP
instructions, or by replacing the string ‘22’ with a spurious value like ‘27’, as to cause the
wrong TCP port to be blocked, whilst maintaining similarity in the assembly code execution.

Figure 44 – rrwatchdoge.conf with SSH access patch

Access to the SSH server is heavily reliant on the ability to manipulate the filesystem, and
hence requires prior access to the device. It is beneficial to replace the dropbear binary with
an OpenSSH server implementation, to allow non-root user authentication whilst supporting
more secure key exchange algorithms (see SSH Access) and possibly supporting file transfers
via SFTP. It is also worthwhile to create an additional user on the device, as to provide an
alternate backup login account.

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

39

OTA (MiIO)
Prior to November 2019, Roborock S6 devices supported over-the-air firmware upgrades via
the MiIO protocol26, where a packet could be transmitted to the device containing instructions
to upgrade the firmware, as visualised in Figure 45. The device would then fetch the firmware
and execute the associated setup scripts. The ability to control the firmware URL to a user-
provided package provided the potential to remotely root, or otherwise gain control over the
device without requiring physical access and/or the disassembly of the device.

The MiIO OTA rooting method has limited use as only devices manufactured within four
months of the product’s release (June 2019) were supported. Consequently, this method was
not applicable to the DUT, as it was manufactured after the method was disabled, however a
downgrade of the miio_client and SysUpdate binaries confirmed the past exploitability of
this method (using miio_client version 3.3.9). Figure 46 visualises the assembly code graph
of miio_client version 3.5.4, where modifications were made to discard the miIO.ota
payload and cause the process to follow the silent fail path in red.

Figure 45 – MiIO OTA payload

Figure 46 – Silent fail of the miIO.ota payload

26 https://github.com/marcelrv/XiaomiRobotVacuumProtocol/blob/master/miIO-ota.md

https://github.com/marcelrv/XiaomiRobotVacuumProtocol/blob/master/miIO-ota.md

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

40

Persistence
Remote Access Persistence (Backdoor)
In benefit of the device’s network stack capability, a virtual private network (VPN) utility or
software defined network (SDN) tool such as ZeroTier27 can be installed, allowing remote
communication with the device through standard IP networking, gaining access to local device
services such as SSH. A proof of concept has been made available28.

Other remote access methods such as a reverse shell can also be established given the freedom
of software and hardware support. Figure 47 below provides insights into the ability to create
private ad-hoc networks despite a remote network topology.

It is worthwhile to note that the implementation of the RFC8520 protocol (see Manufacturer
Usage Description) would aid in preventing these remote access methods from working.

Figure 47 – ZeroTier control panel

27 https://www.zerotier.com
28 https://featherbear.cc/UNSW-CSE-Thesis/poc/

https://www.zerotier.com/
https://featherbear.cc/UNSW-CSE-Thesis/poc/

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

41

Reset Persistence
During the factory reset procedure (reset pin or boot failure), the recovery partition is flashed
onto both system_a and system_b partitions. As this partition is modifiable, changes to the
partition will be propagated to the system partitions after a factory reset. Modifications can
therefore be performed by mounting the recovery partition while the system is live.
A proof of concept has been made available29.

Candidate changes may include enabling SSH access, adding a backdoor user, remote access
persistence patches, and the storage of additional tools like wget, curl, gdb, and strace.

Upgrade Persistence
During the firmware upgrade procedure, the system is updated in the following manner:
1. Download the update to UDISK
2. Extract update to download
3. Unmount system_a / system_b
4. Flash download to system_a / system_b
5. Boot into system_a / system_b
6. Flash download to system_b / system_a
7. Boot into system_a / system_b

Notably, both system_a and system_b partitions are completely overwritten, which would
discard any changes or patches made on the device, inclusive of all previously stated methods.

A new method is proposed to achieve upgrade persistence, allowing modifications and other
rooting artifacts to persist between upgrades. By hooking into the post-extraction stage of the
firmware upgrade process (after step 2) and manipulating the contents of the download
partition, upgrade-persistent changes can be performed – however this procedure is time-
sensitive as the interception must occur between the start of the firmware extraction process
(step 2) and the start of the image flashing process (step 4).

It is noted that interception tasks should complete as fast as possible, to best ensure that all
changes will propagate to the system partitions during flashing. Where multiple changes are
desired to be retained between updates, large sized files and time-bound functions can be
offloaded onto the recovery or reserve partitions (see Data Persistence), where they can
be processed during the runtime of the upgraded system. This offloading technique can
dramatically decrease the number of required steps to perform upgrade persistence patching to
a single step (i,e. creating a boot entry-point that calls the offloaded scripts)

Various techniques can be used to write to the download partition, such as a service worker,
crontab or scheduled task – however one must be mindful of incurred CPU load should the
technique incur a ‘busy-wait’. Binary patching of the SysUpdate could be performed as an
alternative to a timed task and guarantee successful modification, however this method is
complicated and likely prone to failure should the vendor perform unexpected updates to the
binary. It should also be noted that upgrade persistence patching techniques must also handle
future firmware upgrades, and thus must self-replicate its functionality.

29 https://featherbear.cc/UNSW-CSE-Thesis/poc/

https://featherbear.cc/UNSW-CSE-Thesis/poc/

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

42

Chapter 6 | Discussion

Commentary

In discussing the opinions on how manufacturers of IoT / smart home device have addressed
the increasing concerns of digital privacy and product security, we comment on the collected
results and findings, with reference to the threat scenarios previously defined in Chapter 4.

For ease of access, a summary of the threat scenario is provided below:
• TS0 – Concerned with the visibility and ownership of data and the device
• TS1 – Concerned with physical (proximal) threats e.g. supply chains, physical access
• TS2 – Concerned with remote (proximal) threats e.g. monitoring, device takeover
• TS3 – Concerned with remote (distal) threats e.g. backdoors, cloud services, the vendor

System Design
Regarding the embedded system design, Roborock’s decision to strip down their original
Ubuntu Core based system to a more standard embedded Linux system significantly reduces
the attack surface that may be exploited in scenario TS2, whereby the reduction in running
processes consequently generate less network traffic that can be observed by an actor
monitoring the network. Regarding TS1 and TS3, the reduced set of available software and the
omission of a package manager on the device additionally increases the effort required to
sideload and run potentially malicious applications.

It is however emphasised that malicious intent is not prevented, but only slowed down. As
such, in the case of TS1 where periods extended access is possible (such as a supply chain
attacks, or a malicious reseller), the device can still be modified to plant remote access
persistence and grant an actor remote access even after possession of the device has been
released.

Process Privilege Level
Regarding the privilege level of all processes running under the root account, security
concerns are naturally raised for TS1, TS2 and TS3, whereby a single vulnerability in any root-
owned process can lead to system takeover. This threat is most prominent in TS3, as a
vulnerability that lies in the cloud service communications would provide the means for an
actor to gain control over any affected device over the internet. It is again noted that embedded
system applications often run with system-level access (i.e. root) or in a root-less environment
where all processes are effectively elevated – as it often mitigates hardware integration issues.
Extreme care must therefore be taken when developing and securing such programs, however
such attention to detail is difficult.

Device Access
Efforts to restrict access to the device via the serial terminal, ADB port and SSH shell are
largely beneficial, as the restrictions significantly impede the ability to gain control of the
device. In the case of TS1 – ADB communications are restricted because of Roborock’s custom
access control implementations and requires knowledge of a device-specific secret that can
only be retrieved through tedious disassembly of the device, which is also required to access
the UART pins that serve the serial terminal.

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

43

The long period of time required to disassemble, modify and reassemble the device severely
decreases the capability for an actor to perform the modification over a number of devices.
Large-scale modifications through supply chain attacks are only profitable between the stages
of the flashing of the eMMC storage and the assembly of the device.

In the case of TS2, access to the device via SSH is prevented due to iptables rules. In later
versions of the firmware, this restriction is enforced as observed through additional calls
iptables from the WatchDoge and rrlogd binaries. Should the server be accessible for
some reason, knowledge of the root password is still required which is unobtainable remotely.

It is noted that in the case of TS0, the security fortifications serve as hindrance to a device
owner wanting to study or tinker with the device. The inability to use the ADB port and SSH
server force an owner to disassemble the device and establish a UART connection, which may
likely be out of technical ability for many owners who purchase this robot vacuum cleaner.
Authentication flow modifications may potentially completely break access functionality for
devices with outdated filesystem layouts, as was experienced with our device under test.

Modifiable Recovery Partition
Regarding the ability to modify the recovery partition, whilst useful under TS0 (i.e. as a
hardware hobbyist) to store software tools and maintain access between factory resets, security
concerns are raised in the case of TS1 – where the ability to modify the recovery partition
raises the concern of backdoors being planted during the supply chain, or from a previous
owner. Backdoors could eventually lead to the compromise of owner’s data, and of the owner’s
network to which the targeted device is connected to. It is unlikely that an actor with only
momentary physical access to the device will be able to exploit the reset persistence, due to the
time required to disassemble and reassemble the device.

It is recommended that the recovery partition should be marked as ‘permanent read-only’
(Western Digital 2017) on the hardware eMMC level, as there is no need for the partition to be
modified once the initial recovery image is flashed. Hardware write-protection provides the
best method of data integrity as software-level write protection controls can be subverted (such
as removing the ‘ro’ parameter from the Linux mount options).

Should the partition need to be modifiable for some reason, provisions to verify the authenticity
of the filesystem should be enforced, such as some sort of signature verification or asymmetric
encryption. Hardware security features like RPMB (Replay-Protected Memory Block) could
serve to be beneficial, where writes to the storage medium must be paired with an
authentication key that could be stored in an SE (Secure Element).

Data Retention
Whilst data in the UDISK (user data) partition is cleared securely during a factory reset, it is
not cleared during a disassociation event (when the device is removed from a user’s account),
despite the device acknowledging the event and entering access point mode. Under TS0 and
TS1, privacy concerns are raised – as an actor in possession of a recently disassociated device
may be able to extract UGC and PII, inclusive of LIDAR mapping data, network credentials
and network dumps. It would be advised for future firmware updates to delete and effectively
factory reset the device when device disassociation is performed.

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

44

Pairing Security
The plain-text transmission of wireless credentials during initial device pairing raises concern
for TS2, as anyone nearby who is monitoring wireless traffic will be able to eavesdrop and
intercept the wireless credentials. The respective wireless network could then be joined using
the intercepted credentials, allowing further access and enumeration into a victim’s network.
Alarmingly, as there is no passphrase for the pairing access point – the wireless credentials
within the pair request payload can be intercepted without even requiring the actor to join the
same network, due to the behaviour of network traffic in an ‘Open’ wireless network.

It is recommended that the wireless network broadcasted during the device’s access point mode
be secured with some wireless network security protocol, such as WPA2. Furthermore the
pairing request should be encrypted, as stated in the Tuya security guidelines (2020). Whilst
this specific privacy and security concern is only applicable during the pairing of the device,
assumptions should not be made regarding the likelihood nor presence of a malicious actor
nearby.

Encryption of Logs
Regarding the confidentiality of transmitted data, logs remain secure against TS2, even when
the device is placed in an adversarial network condition such as a MITM proxy, or where TLS
/ SSL decryption is present – as logs are encrypted on the application-level. Whilst possible to
visualise the flow of data and knowledge of network activity, the underlying data is ultimately
protected with no way to view the decrypted contents without knowledge of the private key.

The application-encrypted logs are however ineffective against TS1 and TS3, as the log sources
are simply located within the filesystem. Access to any means to read the contents of files
(whether it be serial, SSH, SFTP, ADB, reverse SSH or similar backdoor) will result in the
ability to access log files before they are encrypted. In the case of the vendor, they possess the
private decryption key, and hence will have unfiltered access to decrypt the log data.

In the case of TS0, the encryption of logs (and other transmitted data) is similarly trivial to a
user wanting to view the nature and content of network traffic; however sufficient skill and
technical knowledge is required to navigate a Linux filesystem, and optionally manually patch
or dynamically instrument a process to hook into the pre-encryption or post-decryption stages.

Packet Logging
With the added implementation of the MSG_LOG_DEBUG_* signal in rrlogd, and the ability
to perform a tcpdump packet capture in wlanmgr, privacy and security concerns are raised
under TS3, as the activity of other devices on the same wireless network can be captured. As
residential network traffic is often large and verbose, a great amount of flow detail can be
obtained regarding the access to websites, frequency of website visits, the number of devices
on a network, the types of devices on a network, and information about the network (such as
the IP address). Whilst geographical lookups of IP address are often inaccurate, knowledge of
the approximate region that the targeted device is in may aid in further exploitation.

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

45

Privacy of Uploaded Data
Concerns surrounding TS0 and TS3 are raised regarding the use of, and necessity to upload all
the files from rrlogd. Whilst mapping data and packet logging data (as previously discussed)
may be beneficial to the vendor, as to improve the cleaning functionality of the product, great
trust must be placed in believing that the data is not misused or abused.

As discovered, log data was found to contain wireless credentials - despite the privacy policy
stating that data of that type would not be kept remotely. Consequently, the need to verify
company statements against their actions is stressed, with better transparency (and somehow
confirmation) regarding the use of data. The flexibility to control the type of collected data is
also desired, where privacy-minded owners can choose to opt-out / opt-in of certain log types.

Response of Other Manufacturers

It is noted that whilst the Roborock S6 vacuum cleaner faces several privacy and security
concerns, the company has made considerable effort to fortify their product against potential
malicious threats. Privacy optimisations such as decreased log verbosity and application-level
encryption was observed. Likewise, security fortifications such as overflow detection,
signature verification and access control restrictions were noted. Additional steps can be taken
by Roborock as a company however, to further improve their digital privacy and product
security.

We turn to Xiaomi and Tuya for comparison, to investigate how other companies have
addressed the increasing concerns for digital privacy and product security. Both Xiaomi and
Tuya are large IoT ecosystem vendors who lease their infrastructure to white-label vendors and
OEMs (like Roborock) as a subscription. Naturally, these ecosystem vendors are much larger
in employee count, as both Xiaomi and Tuya have their own multi-staffed security teams.

As a result of their larger business (in both popularity, profit and employee count), these
companies publicly promote the security research of their products and offer a bug bounty to
incentivise research. Consequently, a high number of security vulnerabilities are discovered
(as illustrated in Figure 48), allowing these companies to constantly issue security patches and
fixes to better protect their products.

Figure 48 – Screenshot of CVEs associated with Xiaomi

Whilst it is noted that Roborock is a small company, it is intriguing to see that only one security
vulnerability was disclosed despite having released 13 different products since the company’s
inception in 2014. Whilst is not mandatory for a company to publicly disclose their security
vulnerabilities, it can conversely negatively illustrate the company’s security posture, as
customers may be led to believe that the company is hiding its issues.

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

46

Both Xiaomi’s30 and Tuya’s31 security teams have additionally released white-papers regarding
security minimums and guidelines for products that utilise their infrastructure. Despite the
Roborock S6 vacuum cleaner utilising the Tuya infrastructure (through rriot_tuya), the
failure to encrypt the pairing traffic as outlined in the security guidelines raise concern to
whether Tuya (and other IoT ecosystem vendors) perform security compliance checks on their
white-label partners and OEMs before allowing a partner product to be verified and released.

We end our discussion involving other manufacturers by commenting on the adoption of the
Manufacturer Usage Description protocol (RFC 8520), or rather why it hasn’t been widely
adopted within the IoT and networking industry. Currently RFC 8520 does not seem to be
adopted by any large IoT vendor, nor network equipment manufacturer. Despite Cisco
spearheading the push for the use of MUD32, only their Catalyst line of network switches
support the ‘Network Access Device’ role used in the MUD process.

It is likely that there is no incentive for IoT vendors to release MUD profiles of their devices,
nor is there an incentive for networking equipment manufacturers to support RFC 8520 as there
is no recent sign of activate development on any MUD-related projects. Furthermore, whilst
UNSW’s Internet of Thing Research Group (EE&T)33 has contributed multiple MUD profiles
for a variety of IoT devices, no other shared repository of MUD profiles exist – which further
discourages companies from investing time and effort into implementing the specification.
MUD profiles for the Roborock S6 were generated and are publicly available in the hopes of
supporting the widespread adoption of RFC 8502.

Conclusion

Through the firmware and network analysis from multiple firmware versions of the Roborock
S6 vacuum cleaner, we conclude that Roborock has made efforts to secure their products and
respect the privacy of their customers. Specifically, firmware upgrades incorporated changes
to the ways in which device authentication and remote access was established, as to increase
the difficulty and time required for local and remote threats to gain access to the device.
Furthermore, in response to adversarial network conditions where a wireless network may be
insecure, the confidentiality of transmitted log data was kept through application-level
encryption that would remain given the presence of TLS / SSL decryption.

In the context of IoT and smart home device manufacturers in general, a ‘shift-left’ mentality
to security research is encouraged – evident in the Xiaomi and Tuya each releasing security
papers and offering bug bounty programs to promote the disclosure and reporting of
vulnerabilities, as to patch and better protect their products.

Whilst these companies have made significant improvements to their product’s digital privacy
and product security, further work is required to address the vulnerabilities and concerns raised
in this thesis. Notably, IoT ecosystem vendors like Tuya need to perform (or improve)
compliance checking procedures to ensure that their white-label vendors and OEM clients are
in accordance with the security policies they released. Product vendors need to additionally
review and verify their own policies (i.e. privacy policy) to ensure that their products are in

30 https://github.com/MiSecurity/Cyber-Security-Baseline-for-Consumer-Internet-of-Things
31 https://images.tuyacn.com/smart/docs/TuyaSmart-WhitePaper-Intl.pdf
32 https://developer.cisco.com/docs/mud/#!what-is-mud/what-is-mud
33 https://iotanalytics.unsw.edu.au/mudprofiles

https://github.com/MiSecurity/Cyber-Security-Baseline-for-Consumer-Internet-of-Things
https://images.tuyacn.com/smart/docs/TuyaSmart-WhitePaper-Intl.pdf
https://developer.cisco.com/docs/mud/#!what-is-mud/what-is-mud
https://iotanalytics.unsw.edu.au/mudprofiles

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

47

accordance with their own policies even during upgrades, and that data is securely deleted in
all expected scenarios. Furthermore, selective control over the nature and type of collected data
should be given to the user. Modifications to a device’s storage should additionally be locked
down, where write-access to base data and recovery firmware should be restricted unless
mandatory.

In summary, manufacturers of IoT / smart home devices have addressed to privacy and security
concerns by reacting with positive improvements and fixes, however better care must be taken
to wholistically improve their privacy and security posture. The contributions offered from this
thesis sought to critically analyse the security and privacy of the device, as to provide
suggestions to ultimately improve the state of the art of IoT security and privacy research.

Limitations and Future Work

Whilst a substantial amount of work was performed during this thesis, it is reiterated that the
DUT used in the study was manufactured in June 2020, one year after the official release of
the Roborock S6 vacuum cleaner in 2019. Consequently, the scope of security and privacy
assessment is limited to firmware versions from 2020 – 2022, notably failing to support the
MiIO OTA exploit procedure present early firmware versions. Furthermore, the DUT’s
manufacture month coincides date of the firmware version which used the migrated
authentication flow, providing uncertainty as to whether later manufactured devices contained
a modified filesystem structure that included files missing from the DUT’s filesystem.

It is also worth mentioning that the results collected and observations made from this study
may differ from future replication studies that assess the same Roborock S6 device, as
variances in the product’s region setting and cloud provider (Tuya in our case) may generate
different network traffic and device behaviour.

Further topics of research are presented below which were beyond the scope of the study, or
otherwise follow the study.

• Resilience of applications towards MITM and HSTS certificate pinning bypasses
• Security and strength of the asymmetric keys used
• Security and/or privacy assessment of the smartphone application
• Security and/or privacy assessment of the STM32 co-processor
• Side-channel analysis of sensor data
• Fuzzing of program binaries on the device to find further vulnerabilities
• Dynamic instrumentation of program binaries using Frida
• Upgrade analysis of new firmware versions after v02.29.02
• Analysis of other Tuya-integrated vacuum cleaners to find similar vulnerabilities
• Detailed study of the adoption of RFC 8520

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

48

Bibliography

Abrams, L. (2021) 533 million Facebook users’ phone numbers leaked on hacker forum.

Adrian, D., et al. (2015). Imperfect Forward Secrecy: How Diffie-Hellman Fails in Practice. 22nd
ACM Conference on Computer and Communications Security.

Brown, R. (2015) Smart homes can pay off when it's time to sell.

Costin, A., et al. (2014). A Large-Scale Analysis of the Security of Embedded Firmwares, USENIX
Association: 95--110.

Giese, D. (2019). Security Analysis of the Xiaomi IoT Ecosystem.

Giese, D. (2021). Smart Home Security & Privacy.

Hamza, A., et al. (2018). Clear as MUD: Generating, Validating and Applying IoT Behavioral
Profiles. Budapest, Hungary, ACM Sigcomm workshop on IoT Security and Privacy.

Jimenez, J. C. (2016, 2016-06-08). "Practical Reverse Engineering - Dumping the Flash." from
https://jcjc-dev.com/2016/06/08/reversing-huawei-4-dumping-flash/ ,.

Jmaxxz (2016). Backdooring the Frontdoor, DEF CON.

Jones, R. (2017) Roomba's Next Big Step Is Selling Maps of Your Home to the Highest Bidder.

Kotlyar, E. (2017). Xiaomi DaFang Hacks.

Miralem, M., et al. (2019). About the Connectivity of Xiaomi Internet-of-Things Smart Home
Devices. 2019 XXVII International Conference on Information, Communication and Automation
Technologies (ICAT): 1-6.

Mishra, B. and A. Kertesz (2020). "The Use of MQTT in M2M and IoT Systems: A Survey." IEEE
Access 8: 201071-201086.

Research & Markets (2021) Insights on the Smart Homes Global Market to 2026 - Featuring ABB,
Acuity Brands and Emerson Electric Among Others.

Sriram, S., et al. (2020). LidarPhone: Acoustic Eavesdropping Using a Lidar Sensor: Poster Abstract.
Proceedings of the 18th Conference on Embedded Networked Sensor Systems, Association for
Computing Machinery: 701–702 , numpages = 702.

Tuya Smart (2020). Tuya Smart White Paper on Information Security & Compliance.

https://jcjc-dev.com/2016/06/08/reversing-huawei-4-dumping-flash/

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

49

Ullrich, F., et al. (2019). Vacuums in the Cloud: Analyzing Security in a Hardened IoT Ecosystem,
USENIX Association.

Vtrust, M. S. (2018). Smart Home - Smart Hack - Wie der Weg ins digitale Zuhause zum Spaziergang
wird.

Wei, T., et al. (2015). Acoustic Eavesdropping through Wireless Vibrometry. Proceedings of the 21st
Annual International Conference on Mobile Computing and Networking, Association for Computing
Machinery: 130–141 , numpages = 112.

Western Digital (2017). A detailed overview of the different security methods one can use in an
e.MMC storage device.

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

Appendix

Appendix 1 – rrlogd log scope excerpt (v01.15.58)

Archive Contents

varlog.tar.gz
(tar_extra_file.sh)

/var/log/upstart

/var/log/boot.log

/var/log/bootdmesg

/var/log/dmesg

/var/log/faillog

/var/log/kern.log

/var/log/lastlog

/var/log/rr_try_mount.log

/var/log/syslog

misc.gz

(misc.sh)

date

/dev/jiffies

/proc/interrupts

/proc/softirqs

dmesg

/proc/meminfo

/proc/vmstat

/proc/slabinfo

/proc/zoneinfo

/proc/pagetypeinfo

/sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state

/sys/devices/system/cpu/cpu1/cpufreq/stats/time_in_state

/sys/devices/system/cpu/cpu2/cpufreq/stats/time_in_state

/sys/devices/system/cpu/cpu3/cpufreq/stats/time_in_state

df -h

lsof /

lsof /dev

lsof /tmp

lsof /run

lsof /run/lock

“Smart” Vacuum Cleaners Andrew Jin-Meng Wong

lsof /run/shm

lsof /mnt/updbuf

lsof /mnt/data

lsof /mnt/reserve

lsof /mnt/default

/sys/devices/platform/uart.0/ctrl_info

/sys/devices/platform/uart.0/status

/sys/devices/platform/uart.1/ctrl_info

/sys/devices/platform/uart.1/status

/sys/devices/platform/uart.2/ctrl_info

/sys/devices/platform/uart.2/status

watchdog.gz watchdog.log

rrlog.gz rrlog.log

miio.gz miio.log

SLAMMAP.tar.gz *.ppm

SYSUPD_normal_updater.tar.gz SYSUPD_updater_pid*.log

varlog.tar.gz varlog.tar.gz (itself)

mt_test.tar.ss.gz
/mnt/data/rockrobo/Mt*

/mnt/data/rockrobo/mt*

uarttest.tar.ss.gz /mnt/data/rockrobo/noupload/uart_test*

boot_reason.gz boot_reason

crashlog.gz crashlog

Andrew Jin-Meng Wong “Smart” Vacuum Cleaners

Appendix 2 - rr_login authentication loop (v02.29.02)

