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Abstract 

Research Statement: How have manufacturers of IoT / smart home devices addressed the 
increasing concerns of digital privacy and product security 

With the ever-growing adoption of convenient and user-friendly Internet of Things devices, 
more and more objects around us have made their way onto the internet, requiring connectivity 
to the web for one reason or another. Despite the unknown nature of communication and limited 
transparency of data, such privacy concerns are often overlooked in exchange for convenience. 
This paper audits the Roborock S6 robotic vacuum cleaner to assess its internal operations and 
network activity behaviour, as to investigate any potential vulnerabilities that may render the 
device unsafe or insecure. 

A combination of dynamic and static binary analysis methods were performed to assess the 
security of the device, and network activity was inspected to verify the contents of network 
traffic. Investigation results revealed discrepancies in both the security of the product, and the 
privacy of user data pertaining to authentication credentials. Notably, a novel command 
injection exploit was proposed, and suggestions were made to better improve the device’s 
security and privacy. 
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Chapter 1 | Introduction 

Consumer grade Internet of Things (IoT) devices have become widely adopted with 
continuously growing demand. With demand growing by 12% each year (Research & Markets 
2021), this AU$130bn industry has cordially invited thousands of households to invest in smart 
devices such as light bulbs, fans, televisions and fridges. Giving the abundance and 
affordability of these products, IoT devices have become an integral part of many homes, where 
4 in 5 consumers would be more inclined to choose a property over another given the presence 
such technologies (Brown 2015). 

Although convenient, these devices come with hidden costs and risks. Behind the seemingly 
‘simple’, ‘smart’ and ‘secure’ product features that attract consumers lie a hidden complex 
network of services and devices, where functionality is often obscured and private. Without 
the transparency of what data is being sent, and of where that data is being sent to, consumers 
inevitably pay for convenience with not only their money but with their privacy and security 
(Miralem, Nejra et al. 2019) 

Whilst manufacturers and vendors claim to be secure and/or confidential in how they treat UGC 
and PII, it is evident from various incidents that we cannot completely trust such claims. From 
leaked Facebook user data (Abrams 2021), to rumours of corporations monetising user data 
without consent (Jones 2017), there lies an equal need for consumers to understand the terms 
of service to which they agree to, but additionally for companies to be audited against those 
very same terms of service. 

The infrastructural security and product security of IoT devices must also be scrutinised, given 
the rapid product lifecycle of IoT developments (Giese 2021). As security is often not a sellable 
feature in contrast to new products and most fallibly – convenience, proper and wholistic 
security precautions are often overlooked by companies who are more concerned with profits. 
Consequently, the prevalence of malicious actors in the cyberworld is alarming, where the 
overall lack of security awareness between consumers invites target devices to be easily 
accessed with default passwords or through unpatched vulnerabilities1. 

Given the black-box nature of IoT network communications where there is little transparency 
about the functionality and usage of IoT devices beyond their advertised description, there is a 
need to shed light unto the privacy and security of these devices.  This thesis aims to detail 
how manufacturers of IoT / smart home devices have addressed the increasing concerns 
of digital privacy and product security. Specifically, we audit the Roborock S6 robotic 
vacuum cleaner to assess its internal operations and the nature of data that is transmitted, as to 
verify manufacturer claims, and investigate potential vulnerabilities that render the device 
insecure. 

We first study further motivations behind auditing the privacy and security of IoT systems, 
then review existing research and methods that comprise the current state of the art of IoT 
security and privacy research. Finally, we detail the work performed in this thesis and discuss 
the contributions and conclusions, providing suggestions to further the security and privacy of 
IoT devices.   

 
1 https://www.shodan.io/search?query=webcam 

https://www.shodan.io/search?query=webcam
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Summary of Major Contributions 

This thesis critically analyses the security and privacy of the Roborock S6’s firmware and 
network communications. A list of major contributions and actionable findings are as follows, 
by decreasing order of severity and importance. 

Data Persistence 
File persistence tests were conducted to test the retention of data during the following 
scenarios: firmware upgrade, factory reset, device disassociation (unpairing). It was observed 
that no data was cleared when a device was unpaired, raising concerns regarding data privacy. 
Methods were proposed to persist data during firmware upgrades and factory resets. 

Privacy Policy 
The privacy policy of the vacuum cleaner data was assessed and revealed that a statement 
regarding the locality of wireless credentials was non-compliant, as the credentials were found 
within uploaded log data. 
 
Pairing Security 
The pairing process of the device was observed and revealed that wireless credentials were 
transmitted in plain text over an unsafe medium (wireless network with open / no security), 
despite IoT ecosystem vendor guidelines to require a secured means of communication. 
 
Product Security 
Security assessments were performed on the programs in the Roborock S6 firmware to evaluate 
the security of the device. Whilst most programs were secure, a novel command injection 
vulnerability was discovered in the Android Debugging Bridge implementation. A proof of 
concept was created and disclosed to the vendor. 
Upgrade analysis revealed that the vendor has made non-trivial effort to fortify their software 
against vulnerabilities and limit unauthorised access to the device. 
 
Network Behaviour 
The nature and content of network traffic generated by and received from the Roborock S6 was 
analysed to create a connection map of device communications, and a heatmap of network 
activity. A Manufacturer Usage Description profile (RFC 8520) was created for the device to 
better describe its expected traffic behaviour and provide a means to mitigate foreign traffic. 
The IPv6 capability of the device was also tested, drawing conclusions that possible IPv6 
related issues were benign. 
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Chapter 2 | A Background on IoT 

The Call to Action 

The consumer market has experienced a large influx of IoT devices, largely attributed to the 
presence of IoT manufacturers who offer white-label partnerships with resellers to provide 
“custom” products. Through these partnerships, vendors buy into the IoT manufacturer’s 
ecosystem - namely the product itself, the companion smartphone application, and the cloud 
infrastructure supporting network communications - all without requiring vendors to possess 
any knowledge or understanding of how to design, develop nor manufacture the IoT products 
that they sell. 

This raises concerns regarding the privacy and ownership of user data that is transmitted, as 
vendors themselves are often not in control of what information is transmitted nor of how that 
information is used – for example if the microphone data of a surveillance camera was used to 
determined advertised products related to the conversation. The lack of control over 
information is a potentially serious concern, as vulnerabilities within an IoT infrastructure 
would endanger customers from other vendors under the same infrastructure. Furthermore, the 
lifetime of a vendor business is not guaranteed. With the constant opening and sunsetting of 
IoT vendors, the closure of the business from which an IoT product was purchased from might 
eventually render the device inoperable. 

In the event that an IoT infrastructure suffers downtime or service instability, all white-labelled 
products too will also be affected. Great trust must be placed in the infrastructure’s availability 
and reliability. In conjunction with aforementioned privacy and security concerns, many 
concerned users have turned to internet-less and self-hosted automation systems such as 
HomeAssistant and OpenHAB. As evident in later reviewed works, concerns for privacy and 
security have been a driving force for developers and hackers to research and develop software 
to replace the internet-dependent stock software, effectively decoupling devices from vendor 
services. 

About the Product 

Beijing Roborock Technology Co., Ltd. (Roborock) is a Chinese company founded in Beijing 
that develops robotic cleaning appliances for households. In 2014, partnering with Xiaomi 
Corporation shortly after the opening of their business, the company released a line of both 
affordable and premium smart robotic vacuum cleaners, with their first iteration the “Mi Home 
Robotic Vacuum Cleaner” being released in Sep 2016. They have since released twelve other 
robotic vacuum cleaner models, each model offering new and improved features. Despite 
having released 13 different products, only one security vulnerability has been publicly 
disclosed2, raising concern about the company’s security. 

In June 2019, Roborock released their flagship Roborock S6 vacuum cleaner. Featuring an 
Allwinner R16 SoC (ARM architecture), it is powered by either the Tuya Smart or Xiaomi 
Cloud infrastructure, both market leaders in the consumer IoT industry. Despite being released 
three years ago, the Roborock S6 vacuum cleaner is still widely popular and actively 
maintained by Roborock. This device will be the DUT (device under test) in this thesis. 

 
2 https://global.roborock.com/pages/disclosure-security-vulnerability-on-tuya-iot-cloud 

https://global.roborock.com/pages/disclosure-security-vulnerability-on-tuya-iot-cloud
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Chapter 3 | Current State of the Art 

Broad security study of Tuya-based devices 

The security research group Vtrust (2018) analysed a line of white-labelled IoT product 
revisions based on the IoT manufacturer Tuya to identify common security vulnerabilities. 
Despite vendor claims of ‘military-grade security’, basic packet logging of network activity 
concluded that “the analysis of the ‘smart’ devices using this basic platform is generally 
frightening”, with “serious […] shortcomings”. It was revealed that various PII, encryption 
keys and the device’s serial number (used to specify a device during remote commands) were 
insecurely transmitted over the network, allowing a user on the same wireless network to 
eavesdrop on the communication. Furthermore, during the initial setup and pairing of the IoT 
device, wireless credentials were also insecurely transmitted in plain text, allowing wireless 
network credentials to be observed. 

Vtrust commented on the dangers of vendors selling white-label products, where anyone could 
become a so-called ‘IoT company’ regardless of whether they had “in-depth technical 
knowledge of IoT or IT security”. As a result of the hands-free approach to security and privacy 
for both direct and indirect customers of the IoT platform, concerns were raised regarding the 
ease of distributing maliciously modified devices, where firmware could be tampered with 
during any stage within the supply chain. 

It is worthwhile to recognise that most custom firmware releases or “hardware hacks” originate 
from the desire to decouple hardware from online and official cloud services. These ventures 
effectually disconnect internet-reliant devices from the cloud, and limit their connectivity to a 
local server where communications are transparent and minimal. 

As a result of many Tuya-powered devices sharing the widely popular Espressif ESP8266 
SoC3, Vtrust was able to exploit discovered vulnerabilities on multiple products to perform 
over-the-air upgrades of custom firmware (e.g. ESPhome, Tasmota). An automated flashing 
tool (tuya-convert) was released, allowing consumers to easily integrate these devices with 
local home automation software such as HomeAssistant. As a result of Vtrust’s findings, the 
overall security posture of modern Tuya-powered devices has since improved4, with 
implementations of local flash memory encryption and firmware signing measures during over-
the-air firmware upgrades. 

Vtrust’s technical findings offer insights into methods of network-level security assessment 
highlighting how easily an individual could start their own IoT company, and the possibility of 
reselling devices with modified firmware with malicious intent. In this thesis we perform 
similar network security assessments through means of analysing packet captures to determine 
if data is weakly or insecurely transmitted. 

 
3 https://www.espressif.com/en/products/socs/esp8266 
4 https://www.heise.de/newsticker/meldung/Smart-Home-Hack-Tuya-veroeffentlicht-Sicherheitsupdate-
4292028.html 
 

https://esphome.io/
https://tasmota.github.io/docs/
https://github.com/ct-Open-Source/tuya-convert
https://www.home-assistant.io/
https://www.espressif.com/en/products/socs/esp8266
https://www.heise.de/newsticker/meldung/Smart-Home-Hack-Tuya-veroeffentlicht-Sicherheitsupdate-4292028.html
https://www.heise.de/newsticker/meldung/Smart-Home-Hack-Tuya-veroeffentlicht-Sicherheitsupdate-4292028.html
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Broad security study of Xiaomi-based devices 

Giese (2019) performed a security assessment over a broad range of Xiaomi’s IoT products to 
examine the overall security of the Xiaomi ecosystem. Through different software injection 
and hardware fault injection techniques, Giese obtained shell access into various Xiaomi-
powered devices. It was concluded that due to the enormous size of Xiaomi’s ecosystem, it 
was difficult to enforce global security policies between the different vendor-provided plugins 
that continued to support deprecated functions and APIs that were still being used by legacy 
devices. Out from this research, a cloud emulator5 was built, allowing for complete offline 
functionality and control over a large range of Xioami devices without requiring internet 
connectivity. This research also paved the way for other third-party, privacy-focused, vacuum 
cleaner remote applications to developed, such as Valeduto. 

He concluded that Xiaomi indeed treats their security concerns seriously, given their quick 
responses to reported security incidents and vulnerability reports. In this thesis, we too will 
assess the security and privacy postures of IoT devices on the business-level. 

It should be noted that Giese briefly assessed the security of the Roborock S6 vacuum cleaner 
in his study. Whilst Giese did perform a security analysis of the device under test, this thesis 
was performed as an independent study. With the exception of Giese’s work to obtain initial 
shell access, all other similar methods performed, findings and observations are coincidental. 
This thesis furthers previous studies as it additionally audits the state of privacy of the device. 

Security study of smartphone applications 

Jmaxxz (2016) investigated the security claims of a smart doorlock which had boasted in its 
bank-grade security, and superiority over conventional lock-and-key systems. These claimed 
were however invalidated, as flaws within the smartphone application were discovered which 
allowed control over the lock settings, amusingly only being protected by client-side checks. 
Consequently, modified request payloads containing elevated authorisation claims would be 
naively accepted by the server, allowing lock settings to be modified by a guest or other user. 
Furthermore, various debugging menus were present in the production version of the 
smartphone application, allowing certificate pinning protections to be subverted. In addition, 
the privacy of the user was also questioned, as it was observed that door lock events and other 
identifiable information were being transmitted to a logging endpoint. 

The vulnerabilities in the smart doorlock’s own product security highlight the importance to 
verify any claims that manufacturers may advertise. This study serves as an excellent example 
of a failed access control system, where elementary methods of request tampering and 
hardcoded keys allow for arbitrary privileged control of a device. Subversion of HTTP Strict 
Transport Security (HSTS) and certificate pinning policies through system-wide tools6, per-
application patching7 or accessible debug menus furthermore underlines that certificate pinning 
should not be relied upon to verify identity nor authority. 

 
5 https://github.com/dgiese/dustcloud 
6 https://github.com/nabla-c0d3/ssl-kill-switch2 
7 https://github.com/shroudedcode/apk-mitm 

https://github.com/dgiese/dustcloud
https://github.com/Hypfer/Valetudo
https://github.com/dgiese/dustcloud
https://github.com/nabla-c0d3/ssl-kill-switch2
https://github.com/shroudedcode/apk-mitm
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Analysis of similarities in IoT firmwares 

Costin, Zaddach et al. (2014)  performed a broad static firmware analysis over a large number 
of firmware images to identify common patterns and similarities between product vendors. 
During the analysis of the 693 images, 38 new vulnerabilities were discovered, some of which 
were present in the majority of images. Many hardcoded keys and credentials were also 
discovered that could render the IoT device or its infrastructural service vulnerable. To 
facilitate the similarity analysis of firmware images, where per-byte analysis techniques are 
nonsensical, tools like binwalk, ssdeep, and sdhash were employed - which helped to 
facilitate file exploration relative to their file type and architecture. To compare versions of the 
same binary across different firmwares, a tool called BinDiff was used, which would compare 
the similarities and differences in assembly code and call graphs. 

A large proportion of images shared similarities in code execution graphs, indicating that many 
vendors had simply reused and repurposed sample code (often available as part of the SDK 
from a SoC vendor or IoT framework). Whilst sample code itself is not often vulnerable, given 
the commonality of other vulnerabilities, concern is raised as to the vendor’s technical 
capability and understanding of IoT systems and of security. The tools and methods to perform 
this firmware study are transferable to the scope of this thesis, where static analysis of 
executable programs can be used to identify vulnerabilities or potential malicious modifications 
to existing software. 

Side-channel application of LIDAR sensor measurements 

As more and more IoT devices become online and sensor data is transmitted around the world, 
there are growing concerns to thoroughly investigate the extents of what data can be retrieved 
from the sensors. Given that the outputs of Light Detection and Ranging (LIDAR) sensors are 
reflected intensity values and distance measurements, Wei, Wang et al. (2015) developed a 
method to translate the intensity readings from the LIDAR sensor back into audio signals, when 
the LIDAR sensor was directed towards a surface near an audio source. This allowed speech 
to be identified from micro-vibrations within objects, raising concern regarding the privacy and 
confidentiality of conversations held within a sound-proof room. 

This research has since been continued and tested on robot vacuum cleaners which too 
incorporate LIDAR sensors intended for spatial mapping. In the application of a robotic 
vacuum cleaner, light intensity values are considered a side-channel concern as those readings 
are not required for the operation of a vacuum cleaner. As general off-the-shelf LIDAR sensor 
units (capable of reading such light intensity values) are used within vacuum cleaners, this 
technique could be also applied to detect speech and sound (Sriram, Xiang et al. 2020). Despite 
the limitations of sampling light intensity values on a vacuum cleaner (i.e. accounting for the 
continuous rotation of the LIDAR sensor and audible noise floor as a result of the vacuum 
engine), a high classification accuracy of 91% was still achieved when extracting sensitive data 
from speech such as digits of a credit card. 

Whilst this thesis will not pursue the exploration of sensor data analysis, these two studies offer 
potential future research areas on privacy concerns surrounding robot vacuum cleaners, as 
newer revisions of smart devices become continually equipped with more accurate and feature-
rich sensors. 

https://github.com/ReFirmLabs/binwalk
https://github.com/ssdeep-project/ssdeep
https://github.com/sdhash/sdhash
https://www.zynamics.com/software.html
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Shell access via sideloaded media 

Often as a necessary preliminary step to further research, modification and integration of 
proprietary technologies, many device rooting methods (i.e ways to gain elevated access to a 
device) have been publicly disclosed on the internet. Commonly, devices which are not 
expected to have internet connectivity may provide offline firmware upgrade functionality by 
executing a script or booting from some form of removable flash memory such as a microSD 
or SD card. Kotlyar (2017) demonstrated the ability for the inexpensive Xiaomi Dafang 
Camera to boot into a custom alternate u-boot bootloader that was flashed onto a microSD 
card. Upon detection of a firmware-like storage medium, the device executed the contents of 
the microSD card, and booted into shell instead of the original entry-point script, effectively 
rooting the device. Kotlyar was then able to dump the firmware, later producing a custom 
firmware release that did not rely on the vendor’s cloud infrastructure. 

Through the subversion of interrupting the default boot sequence, resultant shell access allowed 
for the development and release of decoupled software. Whilst the exact rooting steps are 
unlikely to be directly transferable to other devices, the idea of obtaining elevated access via 
sideloading techniques is an important method to investigate. Throughout the course of the 
thesis, we attempted to gain shell access via sideloading methods, but were unsuccessful. 

Shell access via BGA pin shorting 

For devices that do not automatically boot into removable media, methods have been 
discovered to force certain SoC’s to enter a recovery or fallback mode. Allwinner-based SoCs 
implement a mode known as “FEL” that can be entered by pulling a certain pin LOW during 
boot8, which allows device manufacturers to perform initial image flashing and bootloader 
configuration. For developers and hardware hackers, FEL mode allows users to modify the 
boot environment to execute a shell, allowing for further post-exploitation methods and 
firmware dumping / analysis. 

It is noted that FEL mode can also be entered if the SoC fails to successfully launch the 
bootloader. Giese (2019) identified this fact and exploited the physical pin layout of the 
Allwinner R16 BGA package, where the data pins connecting the SoC to the (e)MMC chips 
(where the bootloader is stored) were on the physical perimeter of the SoC. By sliding a piece 
of aluminium foil between the circuit board and the solder plane of the SoC, the electrically 
conductive aluminium foil could momentarily short the data pins long enough to cause the 
bootloader read operation to corrupt and fail, hence booting into FEL mode and eventually 
gaining shell access. This method is favourable when compared to pulling the FEL pin low 
during boot - as access to the FEL pin would require the desoldering and removal of the SoC 
from a circuit board - which can be tedious and prone to mistake and irreversible damage. 

Through this hardware fault injection technique of shorting data pins during boot, Giese was 
able to successfully gain access to a shell on Roborock’s first robot vacuum cleaner (Mi Robot 
Vacuum Cleaner). On a different vacuum cleaner (the Roborock S7), Giese noted that test pad 
TPA17 on the circuit board was connected to the SoC’s FEL pin - allowing FEL mode to be 
entered by usual means without needing to perform a hardware fault injection. 

 
8 Generally triggered by pulling the FEL pin (LRADC0) LOW during boot 

https://linux-sunxi.org/images/b/b3/R16_Datasheet_V1.4_(1).pdf
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Hardware based extraction of flash memory 

In situations where no provisions exist to programmatically extract stored data from a system 
(i.e. shell access to perform disk imaging), hardware devices known as flash programmers can 
be used; designed to read from and write data onto flash chips. Flash programmers incur a high 
cost overhead, as they are rather expensive and only work with specific models and/or types of 
flash chips; rendering it infeasible to own a specific flash programmer for every type of flash 
chip. Jimenez (2016) points out that a Raspberry Pi could be used as an affordable budget 
solution when paired with open-source flash programming software like flashrom. 

It is noted that the process of hardware flash chip dumping is not feasible in the scope of this 
thesis due to resource and cost constraints of not possessing a suitable flash programmer, as 
well as the risk associated with hardware-based methods being possibly destructive with 
irreversible damage. This method of flash memory extraction was not required as other 
methods were successfully performed to obtain the firmware data of the device under test. 

Cold-boot attack to dump memory state 

Regarding prior investigations of smart robot vacuum cleaners, Ullrich, Classen et al. (2019) 
performed a security analysis on the Neato BotVac Connected robot. Through the combination 
of a cold-boot attack - where a system is rebooted without the volatile memory (i.e. RAM) 
being cleared - and the booting of a custom bootloader image, the memory state of the system’s 
prior execution was able to be dumped and analysed. This memory dump is of significant value 
as it would contain the binaries of loaded programs as well as their application state. The 
proceeding analysis revealed major vulnerabilities and concerns in the vacuum cleaner and 
more alarmingly, in Neato’s cloud infrastructure. 

Whilst logs and coredumps were encrypted when transmitted to cloud servers, encryption keys 
were discovered to be hardcoded which nullified any assurances of encryption. Authentication 
and authorisation tokens were all encrypted with the same weak RSA key - which left the entire 
cloud infrastructure vulnerable to impersonated identities and access. Seemingly random 
generated keys were also discovered to be vulnerable, due to the keyspace for entropy being so 
short that the key was able to be bruteforced within reasonable time. Furthermore, an 
unauthenticated endpoint on the robot vacuum cleaner’s remote port was found to be vulnerable 
to a buffer overflow, allowing remote code execution on the robot by anyone connected to the 
same wireless network. 

The analysis of a system’s memory state is beneficial to the security assessment of a product’s 
firmware as static analysis techniques are unable to account for dynamic data such as response 
payloads from client-server communications. This method of memory extraction was not 
required as other simpler methods were successfully performed to obtain the firmware data of 
the device under test. 

 

  

https://www.flashrom.org/Flashrom
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Chapter 4 | Threat Modelling 

To qualify the observations of proceeding results, it is worthwhile to form threat scenario 
models, as to identify the different perspectives and their associated risks/concerns that will 
be assessed. 

Table 1 - Threat model matrix 

 
Threat 

TS0 TS1 TS2 TS3 

- Physical 
(proximal) 

Remote 
(proximal) 

Remote 
(distal) 

C
on

ce
rn

 Physical Access ✓ ✓   
Remote Access  ✓ ✓ ✓ 

Data Ownership ✓    
Data Visibility ✓ ✓ ✓ ✓ 

 
Table 1 above forms an overview of the four threat scenarios analysed in this thesis. 

In TS0, we analyse the implications of data visibility and data ownership in a scenario devoid 
of any malicious threat. This scenario is akin to a product owner who is wary of other parties 
holding data pertaining to them and wishes to seek transparency in the type and storage of data 
retained. The scenario additionally extends to a product owner who wishes to maximise the 
functionality of a device that they purchase and own – such as through improvements or various 
modifications. 

In TS1, we assess the threat implications from parties who are within physical proximity of the 
device. This includes parties as part of the supply chain, second-hand sellers, and individuals 
who have either momentary, or prolonged physical access to the device. Concerns are raised 
regarding parties being able to data from the device or regaining control of the device after 
losing physical access. 

In TS2, we inspect the ability for a remote party to monitor device communications, or 
otherwise gain control over a device, without needing physical access to the device at any time. 
Specifically, the remote party is nearby / within proximity of the device (either within wireless 
range or connected to a shared computer network). 

In TS3, we analyse possibility and implications for a remote party to access the device, either 
through means of a backdoor (possibly planted from TS1 / TS2), or through the vendor’s system 
themselves. We also assess the ramifications of gaining remote access to an internet-connected 
sensor-enabled device, however it should be noted that the scope of this thesis excludes the 
propagation of data in the cloud once received by the vendor. 
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Chapter 5 | Work Performed 

Scope and Summary of Work 

We begin our work by first defining the scope and extent to which the privacy and security 
assessment will be performed. 

In investigating privacy concerns, we monitor the nature of wireless network activity from a 
powered off factory-reset Roborock S6 vacuum cleaner when where we pair (initialise), 
operate, and let the device idle. We observe the device’s behaviour and interaction to other 
devices on the same wireless network (LAN), as well as its communications to external servers 
(WAN). This is performed as to better understand the nature of network communications, such 
as data frequency, duration, size, destination, and content. 

In investigating security concerns, we analyse the behaviour and configuration of the system, 
and identify points of potential compromise or modification that may allow a third-party to 
gain control of the device, or otherwise render the device insecure. We additionally compare a 
baseline version of the device firmware to its most recent (April 2022) as to draw insights into 
how the manufacturer (Roborock) has responded to both the security of the device, and the 
privacy of the user. 

Whilst work and discussions may reference topics from the following: smartphone application 
communications and interactivity, internal cloud functionality and cloud endpoint 
vulnerabilities, and the propagation of cloud data - they are beyond the scope of assessment 
and were performed out of interest, or as aides to other discussion. 

 
 

 

Throughout the course of investigation, findings relating privacy and security were not 
mutually exclusive, and often involved a discussion of both areas. As such, this chapter will be 
subdivided by work categories, and only briefly overview implications. Detailed privacy and 
security discussions will follow in the Discussions chapter. 
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Preliminary Device Access 

 
Figure 1 - UART pin locations 

 
As discovered by Giese (2019), the Roborock S6 vacuum cleaner contains circuit board test 
pads that correspond to the Allwinner R16 SoC’s configured serial pins, as seen above. 
In detail, TPA8 is the device’s TX pin, TPA15 is the device’s RX pin, and TPA16 is ground. 
A USB to UART adapter can then be used to gain access to the serial interface  

Once a serial connection was established (baud rate = 115200), functionality in the U-Boot 
bootloader firmware can be exploited to enter the bootloader’s shell mode, by means of sending 
multiple ‘s’ characters to interrupt the boot sequence9. Within the shell, Giese documented a 
series of instructions to extract the root password from a file called vinda, located inside the 
device’s eMMC flash. This file contained a 16-byte string, which when XOR’d with the byte 
0x37, results in the root password used to gain access to the device. It is noted that root shell 
access is obtainable without requiring the root password, however it is beneficial. 

Table 2 - Root password extraction procedure 

Step Command Description 

1 ext4load mmc 2:6 0 vinda Load contents of vinda into memory position 0 

2 md 0 4 Dump the first 4 words from memory position 0 

3 ------------------------ XOR values with 0x37 

 

 
Figure 2 - Password decryption of the vinda file 

 
9 https://github.com/allwinner-zh/bootloader/blob/master/u-boot-2011.09/board/sunxi/board_common.c#L843-
L847 

https://github.com/allwinner-zh/bootloader/blob/master/u-boot-2011.09/board/sunxi/board_common.c#L843-L847
https://github.com/allwinner-zh/bootloader/blob/master/u-boot-2011.09/board/sunxi/board_common.c#L843-L847
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Dynamic Firmware Analysis 

Device Fingerprinting 
Upon gaining access to the shell, device fingerprinting was performed as to better understand 
the operating system, hardware feature set and software capability. 

It is important to know that the device under test was manufactured in June 2020, one year after 
the official release of the Roborock S6 vacuum cleaner in June 2019. As a result, the recovery 
firmware (stored in mmcblk0p7) is versioned 01.15.58 (25th March 2020). All firmware 
investigation processes and results collected in the proceeding sections were performed against 
version 01.15.58, until the upgrade analysis section on page 2323. 

Table 3 below outlines the various commands and outputs used to identify the system 
information. Other necessary hardware information (such as storage and memory) is excluded 
from the table as they are officially listed on the Roborock product webpage10. Most notably, 
fingerprint results conclude that the system is running an ARM release of Ubuntu 14.04.3 LTS, 
with libc version 2.19 (released 2014). This finding aided the installation and execution of other 
software that was during the security and privacy assessment of the device under test. 

 

Table 3 - v01.15.58 System Fingerprint 
Command Output 
uname -a Linux rockrobo 3.4.39 #1 SMP PREEMPT Wed Mar 25 

20:47:59 CST 2020 armv7l armv7l armv7l GNU/Linux 
ldd --version ldd ldd (Ubuntu EGLIBC 2.19-0ubuntu6.6) 2.19 

cat /etc/os-release NAME="Ubuntu" 
VERSION="14.04.3 LTS, Trusty Tahr" 
ID=ubuntu 
ID_LIKE=debian 
PRETTY_NAME="Ubuntu 14.04.3 LTS" 
VERSION_ID="14.04" 
HOME_URL="http://www.ubuntu.com/" 
SUPPORT_URL="http://help.ubuntu.com/" 
BUG_REPORT_URL="http://bugs.launchpad.net/ubuntu/" 
ROBOROCK_VERSION=3.5.4_1558 

cat /etc/OS_VERSION ro.product.device=MI1558_TANOS_MP_S2020032500REL_M3.
3.0_RELEASE_20200325-204847 
ro.build.display.id=TANOS_MP_R16_RELEASE_20200325-
204847 
ro.sys.cputype=R16.STM32.A3.G1 
ro.build.version.release=1558 
ro.build.date.utc=1585140527 

 
 

 

 
10 https://global.roborock.com/pages/roborock-s6 

https://global.roborock.com/pages/roborock-s6
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Process Capability 
An instance of htop - a process viewer utility11 - was loaded on to the device to monitor the 
running processes as shown in Figure 3, and described in Table 4. Immediate observations 
revealed that all non-system processes were executed under root-level privileges, which raises 
device security concerns as a potential vulnerability in any of the executables may lead to 
system takeover. 

It should be noted that it is not uncommon for embedded Linux systems to run processes under 
the root account during development as difficult IPC and communication port access issues 
(e.g. udev rules) can be bypassed whilst the product is being developed. If process privileges 
are not tightened for production or deployment releases however, vulnerabilities are formed 
regarding least-privilege security principles. 

Given the nature of the device running an ARM version of Ubuntu, the execution of foreign 
binaries was tested successfully, confirming that there no software execution whitelist policies 
present in the system. 

 
Figure 3 - Process list (v01.15.58) 

 

Table 4 - Important processes (v01.15.58) 
Program Purpose 
AppProxy Central management 
RoboController Vacuum cleaner logic 
rr_loader Sensor and cleaning driver 
WatchDoge System health and process monitor 
rrlogd Device log manager 
rriot_tuya Tuya cloud communications bridge 

 
11 https://github.com/htop-dev/htop 

https://github.com/htop-dev/htop
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Network Capability 
A list of open ports and firewall rules were collected as shown in the figures below. Collected 
results revealed that ports were exposed on tcp/6668 and tcp/22 (SSH), with the SSH server 
listening to both IPv4 and IPv6 connections. As suggested in Figure 5, inbound IPv4 
connections to the SSH server were dropped, however IPv6 connections were not (Figure 6). 
In effect, efforts to prevent SSH access may have been undermined due to the lack of IPv6 
access control restrictions. 

To verify this hypothesis, the vacuum cleaner was connected to a wireless network serving 
DHCPv6 leases from an Orange Pi R1 Plus device running OpenWRT (as the main network 
infrastructure did not support IPv6 – see Test Infrastructure Setup). Results from ifconfig 
refuted this theory, as the IPv6 address listed was prefixed with fe80::, which hints that the 
device did not request for a DHCPv6 lease – hence no IPv6 address was assigned to the device, 
rending the device unreachable via IPv6. 

 
Figure 4 - netstat (v01.15.58) 

 

 
Figure 5 - iptables (v01.15.58) 

 
Figure 6 - ip6tables (v01.15.58) 

 

 
Figure 7 - ifconfig (v01.15.58) 

https://openwrt.org/
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User Enumeration 
No novel information was extracted from the /etc/passwd and /etc/shadow files, however 
it was confirmed that the password hash in the /etc/shadow file matched the root password 
located in the vinda file, as demonstrated in Figure 10. Upon inspection of /etc/passwd~ 
file (a backup version of /etc/passwd), existence of a user called ruby was discovered with 
a home path set to /home/ruby, which existed as a blank directory in the file system - likely 
being a remnant from a previous firmware version. 

 
Figure 8 - /etc/passwd (v01.15.58) 

 
Figure 9 - /etc/shadow (v01.15.58) 

  

 
Figure 10 - Generated SHA512 password hash 

Power Analysis 
A power analysis was performed to determine how to charge the device’s battery without 
requiring the charging dock’s charging contacts, as it was difficult to keep the device in contact 
whilst performing other tests. Figure 11 illustrates the disassembly of the charging dock, which 
reveals the power leads that connect to the charging contacts. Measurement of the charging 
terminal voltages whilst loaded and unloaded revealed that dock’s charge controller outputs 
~4.2VDC when there is no vacuum connected, and ~20.4VDC when the vacuum is loaded 
(with an equivalent resistance of 3.7 kΩ) 

It was noted that when the 4-wire battery was connected to the device with only the supply 
leads (+ve and -ve), the device would fail to remain powered on and shutdown after 
approximately 20 seconds, likely as a fail-safe mechanism as shown in Figure 12. 

 
Figure 11 - Underside of the charging dock  

Figure 12 - 2-wire battery shutdown log 
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Data Persistence 
Temporary files were created in every directory of the filesystem as to investigate which file 
paths were untouched during the firmware upgrade, factory reset, and device disassociation 
(unpair the device via the smartphone application) procedures.  

Table 5 - Untouched directories during volatile actions 

Firmware Upgrade Factory Reset Disassociation 
(mmcblk0p11) /mnt/reserve (mmcblk0p11) /mnt/reserve ALL 

(mmcblk0p1)  /mnt/data  
 

 
Where results for upgrade persistence and reset persistence were sensible, the results from 
device disassociation were alarming, as no data was removed from the device even after the 
device was deleted from the user’s account. Whilst it could be assumed that device 
disassociation was then followed by an immediate re-pair process by the same party, failure to 
follow this flow could potentially lead to PII and UGC being shared to another party if an 
unpaired device was given away. 

Whilst statistical and calibration data (mmcblk0p11) are retained during firmware upgrades 
and factory resets, it can be noted from Figure 13 that user data (mmcblk0p1) and system 
partitions are securely wiped (block-writes rather than just files being unlinked in the partition) 
during the factory reset procedure, preventing data recovery tools like photorec12 from 
recovering data. 

 
Figure 13 - Serial log during factory reset 

  

 
12 https://www.cgsecurity.org/wiki/PhotoRec 

https://www.cgsecurity.org/wiki/PhotoRec
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Static Firmware Analysis 

Firmware Extraction and Layout 
To statically analyse the firmware of the device (as to provide a ‘offline’ access to the device’s 
system), a firmware dump was created with the dd utility via SSH. It is noted that the device 
had firewall rules in place which needed to be bypassed prior to connecting (as later explained). 
Following the commands from Figure 14, a set of eMMC partition dumps were created, which 
have been tabulated as shown in Table 6. 

 
Figure 14 - Firmware dump commands 

 
Table 6 – Firmware partition mapping 

Partition Label Size Mount Point Description 
1 UDISK 1.5 GB /mnt/data User data 
2 boot-res 8 MB  Bootloader resources 
3 - 1 KB  (unknown) 
4 - - - (does not exist) 
5 env 16 MB  Boot environment 
6 app 64 MB /mnt/default Device data (read only) 
7 recovery 512 MB  Stock firmware 
8 system_a 512 MB / Firmware A 
9 system_b 512 MB / Firmware B 

10 download 528 MB /mnt/updbuf Firmware update storage 
11 reserve 16 MB /mnt/reserve Device statistics 

 
The UDISK partition contains UGC pertaining to map and cleaning data, in addition to device 
logs and device configurations (such as sound settings, clean scheduling, network settings). 

The device contains two copies of the operating system firmware, labelled system_a and 
system_b. If the system fails to boot properly, a hardware watchdog will restart the device, 
and boot into the other partition. Should both partitions result in a failed boot, or a firmware 
reset is performed, the contents of the recovery partition (an old stock firmware version) will 
be flashed onto both system_a and system_b. It is noticed that the recovery partition is 
modifiable. 

The reserve partition contains statistical data (officially termed a ‘blackbox’) storing the 
total number of cleans performed, bumper sensor clicks, hardware information, and error log 
events. The file structure of this partition is displayed in  
Figure 15 on the following page. 
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mmcblk0p11 (reserve) 

|   anonymousid1 

|   blackbox.db 

|   CompassBumper.cfg 

|   counter 

|   endpoint.bin 

|   hwinfo 

|   lds_calibration.txt 

|   mcu_ready 

|   RoboController.cfg 

|   rrBkBox.csv 

+---rriot 

|       tuya.json 

|   try 

 

 
Figure 15 – File structure of mmcblk0p11 

 

 

Commentree 

 github.com/featherbear/commentree 
 
A documentation tool was created and developed for this thesis to better mark important 
regions and annotate lines of plain-text files in the device firmware, which served beneficial in 
reviewing and analysing text content between research sessions. This tool was used to review 
and mark the configuration files and logs stored on the device’s filesystem, and additionally 
provided portability when performing research on different machines. A prototype version is 
available on GitHub, with plans to improve and complete it in the future. 

 
Figure 16 - Screenshot of the Commentree tool 

  

https://github.com/featherbear/commentree
https://github.com/featherbear/commentree
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Stock Ubuntu Comparison 
As system reconnaissance (see Device Fingerprinting) indicated that Ubuntu 14.04.3 LTS was 
used as the firmware’s base image13, altered or modified binaries (such as one that has additional 
features or possible malicious functionality) could be identified through comparing the version in 
the base image against the device’s version. A byte-level MD5 hash comparison was performed 
for programs in the /bin, /sbin, /usr/bin, and /usr/sbin directories. 

Results concluded that except for one program, all binaries completely matched the base 
image’s version, which indicates no sign of alteration or modification to existing programs. 
The binary whose MD5 hash differed14, ntpdate, is responsible for retrieval and updating of 
the device’s time from a time server. When performing a function-level binary comparison 
with BinDiff (as proposed by Costin, Zaddach et al. (2014)), a low similarity ratio of 0.36 
was produced as shown in Figure 17 – indicating a large change in program functionality. 

Further binary analysis and cross-examination of the assembly call graphs however revealed 
that the version of ntpdate on the device was only a stripped build of the base version 
(4.2.6p5@1.2349-o), built without public key cryptography support (provided by OpenSSL). 

 
Figure 17 – BinDiff comparison of ntpdate (v01.15.58) 

 
It was also noted that alongside the added vendor software in /opt/rockrobo, the firmware 
image contained the additional packages rsync, ccrypt, and tcpdump, however rsync and 
tcpdump had no usage calls in any program (as of version firmware 01.15.58). 

 
Figure 18 – apt-get history.log file 

 
13 http://cdimage.ubuntu.com/ubuntu-base/releases/14.04/release/ubuntu-base-14.04.3-core-armhf.tar.gz 
14 base md5: 122890cbbaff8ca98f9664add64492bd | device md5: 006a0967281c9a061362086b638a21a4 

http://cdimage.ubuntu.com/ubuntu-base/releases/14.04/release/ubuntu-base-14.04.3-core-armhf.tar.gz
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ADB 
ADB, short for Android Debugging Bridge, is a development and utility tool to communicate 
with an Android device, or any device that implements the server functionality. This tool allows 
for the management and transfer of files, installation of applications (on an Android device), 
and access to the device’s shell. In the Roborock S6’s firmware there is a custom version of 
the adbd binary that serves communications (via FunctionFS15) from the micro USB port 
located at the top of the vacuum cleaner, as visualised below. 

 
Figure 19 – Exposed micro USB connector on the Roborock S6 

 
The binary has additional functionality to perform system tests (the uart_test command) 
and flashing of the device (the ruby_flash command) without requiring the disassembly of 
the device to gain access to the programming pins or test pads. 

 
Figure 20 – Custom adbd auth challenge flow 

 

Access to the ADB interface is restricted however, as a dynamic challenge / response auth 
process is required to issue adb shell commands. The authentication flow summarised in 
Figure 20 is as follows: 

1. The user requests the challenge token, providing the 16-byte vinda password, followed by 
‘rockrobo dynamickey’ 

2. The user generates the response16 based off the challenge token and the device’s ID  
3. The user issues a command, providing the vinda password string, the response token,  

and the command they want to execute  

 
15 https://www.kernel.org/doc/Documentation/usb/functionfs.txt 
16 https://featherbear.cc/UNSW-CSE-Thesis/posts/execs/usr-bin-adbd/#challenge-response-generation 

https://www.kernel.org/doc/Documentation/usb/functionfs.txt
https://featherbear.cc/UNSW-CSE-Thesis/posts/execs/usr-bin-adbd/#challenge-response-generation
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If the auth challenge succeeds, further custom access control implementations restrict the 
commands that can be executed, based off a value of a property named adb_lock in the read-
only /mnt/default/adb.conf file. It is noted that the execution of any arbitrary command 
is only possible when the value is set to 0, however this is never possible as the adbd binary 
will reset the value to 1, as shown in the assembly call graph below. 

 
Figure 21 – adbd lock reset flow 

 

A novel command injection vulnerability was discovered in the adbd binary which subverted 
the access restrictions, allowing any arbitrary command to be executed regardless of the current 
access level. Whilst the ampersand (&), semicolon (;), pipe (|) and backtick (`) characters are 
sanitised from the command string to prevent command chaining, failure to filter out the dollar 
sign ($) character allows for command expansion to be performed via the following command. 

adb shell [SYS_PASSWD][ADB_PASSWD] uart_test $(COMMAND) 

A proof of concept has been made available17. This vulnerability additionally exploits the fact 
that the uart_test command actually spawns a /bin/sh shell via a libc system library 
function call, which supports command expansions. Arbitrary command execution is obtained, 
as demonstrated by the proof of concept below. This exploit could be used to exfiltrate data 
from the system (such as map data and wireless credentials), write to the filesystem, or possibly 
gain SSH access (as later explained). 

 
Figure 22 – adbd command injection vulnerability PoC 

It is worthwhile to state the limitations of this exploit, as its success relies on the knowledge of 
the contents of the vinda file, and the device ID. Whilst the device ID is easily obtainable via 
viewing the USB device information, gaining access to the vinda file is non-trivial, and 
requires either the disassembly of the device to access the UART pins, or via another exploit. 

Nevertheless, whilst this novel exploit does not provide a means to instantly gain control over 
a device, it provides a post-exploitation method to easily interface with the device over USB, 
should SSH or serial connections become inaccessible. 

 
17 https://featherbear.cc/UNSW-CSE-Thesis/poc/ 

https://featherbear.cc/UNSW-CSE-Thesis/poc/
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Device Logs (rrlogd) 
The rrlogd binary is responsible for the management, rotation and uploading of logs to the 
Xiaomi File Data Service server18 (as determined by the device’s manufacture release). 

Through both static analysis of the binary, and dynamic analysis of the filesystem, the 
following categories of log data was observed: application logs relating to vacuum cleaning 
functionality, application configuration, mapping data19, firmware upgrade logs, device 
hardware information, system lifecycle logs, running processes, network information and 
cleaning statistics. Newer versions of rrlogd (i.e. in the v02.29.02 firmware) also include the 
ability to upload network captures, as later explained (see Network Capture). 

Before the logs are upload, they are compressed and encrypted with RSA + AES, as evident in 
Figure 23. Log files (see Appendix 1) are primarily sourced from the following directories: 
• /mnt/data/rockrobo/rrlog/ 
• /dev/shm/ 
• /mnt/reserve/ 

 
Figure 23 - Disassembly of the encryption routine in rrlogd (v01.15.58) 

 

 
Figure 24 – iptables allow rule in rrlogd (v01.15.58) 

 
It was curiously noted that rrlogd implemented functionality to potentially unblock inbound 
SSH connections depending on the device model. However the specific DUT (Roborock S6) 
would not satisfy the required conditions and so was unaffected. 

 
18 http://docs.api.xiaomi.com/en/fds/ 
19 Determined to be stored as in the RRMapFile format. 
See https://github.com/marcelrv/XiaomiRobotVacuumProtocol/blob/master/RRMapFile/RRFileFormat.md  

 

http://docs.api.xiaomi.com/en/fds/
https://github.com/marcelrv/XiaomiRobotVacuumProtocol/blob/master/RRMapFile/RRFileFormat.md
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Upgrade Analysis (Version 02.29.02) 

Whilst upgrades are a means to add additional features or improve the performance of existing 
functions, upgrades additionally assess a company’s response to security vulnerabilities and 
privacy concerns. It is rather uncommon for vendors to include internal system changes, or 
detailed security notes in upgrade changelogs as this information will not be of any use to 
common end-users. Independent research must therefore be performed to produce a system 
changelog that addresses security and/or privacy concerns. 

The DUT was upgraded from v01.15.58 (25th March 2020) to v02.29.02 (28th April 2022), with 
firmware images being dumped between the incremental upgrades. Static firmware analysis 
was then performed to compare the changes in the filesystem between versions and has been 
collated in the table below. In this section of the thesis, the base firmware (v01.15.58) will be 
compared against the latest version (v02.29.02) to best discern Roborock’s response to security 
and privacy concerns throughout the product’s life. 

Table 7 – Firmware upgrade changelog 
Firmware Official Changelog Unofficial System Changelog 
01.17.08 
(17th April 2020) 

• Supports multi-floor map saving and 
robot knows which floor it is 

• Update to new structured SLAM 
algorithm to make map more reliable 

• Support customised room cleaning 
sequence 

• Support no-mop zone 

• iptables enforcement to drop SSH 
•  rrlogd 
•  WatchDoge 

• Utilities change to busybox 
• SSH server changed to dropbear 
• rriot_rr added (but not enabled) 
 

01.19.98 
(9th June 2020) 
 

• Improvised Wi-Fi Easy Connect 
• Overall improvements 
• Bug fixes 
• UX fixes 

• Serial handler changed to rr_login 
 

01.20.76 
(23rd June 2020) 

• Obstacle avoidance enhancements 
• Bug fixes and UI optimisation 

- 

… … … 
02.29.02 
(28th April 2022) 

• Optimized the quick mapping 
experience 

• rriot_rr enabled 

Firmware Images 
A security assessment of the firmware upgrade procedure was beyond the scope of this thesis, 
however it is worthwhile to mention that upgrade packages are encrypted, as observed when 
intercepted upgrade packages were not trivially extractable. Brief analysis of the SysUpdate 
binary indicate that packages are additionally signed to prevent unauthorised firmware upgrade 
files. Whilst a subroutine (as annotated below) indicates that files may be encrypted with 
ccrypt, this routine is deprecated given that ccrypt is removed in later firmware versions. 

 
Figure 25 – Obsolete decryption routine in SysUpdate 
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Broad System Changes 
A filesystem comparison between the base firmware and latest firmware revealed a system 
migration towards an embedded system design, where functionality is stripped and unused 
tools are removed from the firmware. In comparison to the base firmware (10680 files totalling 
242 MB), a 60% reduction in filesystem size was observed (1976 files totalling 98 MB). 

Most noticeably, many utilities were replaced with a stripped-back busybox distribution 
(v1.24.1), commonly used in embedded Linux systems to decrease firmware image size. 
Ubuntu-like and Debian-like files and folder structures (including the apt-get and dpkg 
package managers) were additionally removed in later firmware versions. Whilst the removal 
of package managers does not prevent foreign binaries from being loaded and executed, it does 
significantly increase the time required to execute foreign binaries. 

It was also noted that the rsync and ccrypt binaries previously found in base firmware were 
removed, however the added tcpdump package remained. 

MD5 hashes were calculated for the binaries in the latest firmware and were compared against 
the base firmware (see Stock Ubuntu Comparison) to determine if files were changed. All 
shared binaries (ignoring programs replaced with busybox) in the /bin, /sbin and 
/usr/sbin directories matched, indicating that no changes exist. Whilst some binaries in the 
/usr/bin directory were modified, functional analysis comparisons concluded that only 
performance changes were made. 

We now outline the non-trivial changes noticed between the base firmware and latest firmware. 

IPv6 Routing 
As previously assessed during the dynamic firmware analysis of the Roborock S6 (see Network 
Capability), no ip6tables rules were applied in the base firmware – however as the device 
did not request nor assign itself an IPv6 address (other than its link-local address), access to 
exposed ports on the device via IPv6 were denied. Despite the device being unreachable via 
IPv6, newer firmware versions explicitly prevent IPv6 traffic (in both directions) by enforcing 
DROP rules to all network chains, as shown in the program output below. 

 
Figure 26 – ip6tables results (v02.29.02) 

 

Authentication Flow Modification 
In the base firmware, device authentication from a terminal interface (such as through SSH or 
serial) was managed through the standard pam_unix.so module, which would utilise the 
authentication information within the /etc/passwd and /etc/shadow files. It was noted 
that the root password was identical to the decrypted value of the vinda file contents in the 
device data partition (see Firmware Extraction and Layout). 
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Newer firmware versions (as of firmware version 01.19.98, released 9th June 2020) however 
no longer use the standard module to authenticate login requests, and instead use a custom 
authentication routine called verify_shadow located in the vendor’s libuart_api.so 
library. As visible in the disassembly below, the presence of a /mnt/default/shadow file 
is noted – whose purpose likely mirrors the /etc/shadow file (to store password hashes). The 
presence of /mnt/default/shadow.sign is also noted, used in an RSA signature check to 
verify the integrity of /mnt/default/shadow. It is inferred that modification to the root 
password is difficult without knowledge of the RSA key used to perform the signature signing. 

This authentication flow modification does not apply to all authentication interfaces on the 
system, as the /bin/login and su binaries still utilise the standard Unix authentication. Only 
programs which specifically use the libuart_api.so library (i.e. vendor software) are 
affected by this authentication flow modification. 

 

 
Figure 27 – verify_shadow function routine 

 

The DUT specifically used during this thesis however did not contain the shadow or 
shadow.sign file, likely due to the authentication flow changes not yet propagating through 
the manufacture and initial device flashing process. Consequently all authentication methods 
in firmware versions which utilised the verify_shadow routine (serial, SSH, ADB) would 
always fail, as the missing files would trigger early exit conditions. 

It is noted that the manufacture date (June 2020) of the Roborock S6 vacuum cleaner 
specifically used during the thesis was unideal, as it coincides with the release month of 
firmware version 01.19.98, where this authentication flow modification was implemented. This 
raises uncertainty regarding how the vendor may have modified the filesystem. As the base 
firmware was versioned in March, it is assumed that the DUT has the filesystem structure of a 
device manufactured prior to June, and hence prior to the authentication flow modification. 

It would be possible to patch the libuart_api.so binary to always return a successful 
verification result, however this was not tested as it would require greater effort as compared 
to other trivial methods to gain access.  



“Smart” Vacuum Cleaners Andrew Jin-Meng Wong 

26 

Serial Access 
Later firmware versions replaced the original serial handler /sbin/getty with a custom 
implementation named rr_login. Similar to the patched SSH interface, this binary restricted 
serial access (see Appendix 2) to only the root user, and utilised the verify_shadow 
authentication flow - which would always fail with the DUT. 

As consequence to the serial login always failing because of the missing shadow and 
shadow.sign files, the following steps were developed to regain access to the console by 
replacing the serial handler in the /etc/inittab file (see Figure 28). 

1. Boot into the u-boot debug shell by sending ‘s’ 
2. Overwrite the init entry point to start /bin/bash 

▪ setenv setargs_mmc ${setargs_mmc} init=/bin/bash 
3. Resume system boot with the boot command 
4. Disable the hardware watchdog 

▪ echo V > /dev/watchdog 

5. Edit the /etc/inittab file 
▪ Remove ::respawn:/sbin/rr_login -d /dev/ttyS0 -b 115200 -p vt100 
▪ Append ttyS0::respawn:/bin/login 

6. Reboot the system with the reboot command 

 
Figure 28 – SysV configuration script (v02.29.02) 

 

Upon modification of /etc/inittab, serial access was restored allowing access to the device 
with the original root password.  

SSH Access 
In the base firmware, a stock OpenSSH server was exposed on tcp/22 on both IPv4 and IPv6 
addresses (albeit no IPv6 connection was able to be established), the upgraded firmware 
revealed that the SSH server was replaced with dropbear (v2013.60), a compact SSH server 
that is commonly used in embedded Linux system. Notably, this dropbear binary was 
modified to limit access solely to the root user and implemented the aforementioned 
verify_shadow authentication flow. The standard Unix authentication flow can be restored 
by replacing the dropbear binary with a stock or alternate server binary. 

It was also noted that the dropbear binary only offers two legacy key exchange algorithms, 
diffie-hellman-group1-sha1 and diffie-hellman-group14-sha1, both which are 
considered to be weak by modern cryptography standards and may be vulnerable to the attacks 
like Logjam (Adrian, Bhargavan et al. 2015). 
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A binary analysis of the WatchDoge and rrlogd binaries in the latest firmware reveal that 
extra functionality was implemented to further enforce SSH access restrictions (as previously 
established in the Network Capability section), as evident in Figure 29, where the very first 
functional instruction was to call iptables -I INPUT -j DROP -p tcp --dport 22. 

 
Figure 29 – WatchDoge process enforcing iptables 

Network Capture 
Static analysis of the updated rrlogd binary in the latest firmware revealed new IPC signal 
handling behaviour. When the MSG_LOG_DEBUG_ENABLE signal was received, a function in 
the wlanmgr process is called, whose behaviour is as described below. 

Table 8 – wlanmgr routine 0x136e8 (v02.29.02) 
Signal Action Description 

0 rm -rf /mnt/data/debug Delete debug files 

1 tcpdump -i any -s 0 -C %lu 
-W %d -Z root -w %s/%s/%s & 

Perform packet capture 

2 killall tcpdump Stop packet capture 

3 /opt/rockrobo/wlan/ 
wifi_debug_collect.sh 

Collect other network information 

 
Most notably, the wlanmgr process was observed to be able to create network packet captures 
via tcpdump. When rrlogd receives the MSG_LOG_DEBUG_UPLOAD_DATA signal, the packet 
capture dump along with other files (as referenced by the wlan_debug_collect.sh script) 
are uploaded to the log servers. The table below details the content of uploaded data.  

 

Table 9 – Collected network data (v02.29.02) 
Filename Source Description 
resolv.conf /etc/resolv.conf DNS nameserver configuration 
netstat.txt netstat -anp List of all sockets and related processes 
ifconfig.txt ifconfig Overview of network interfaces 
network_packet.pcap (wlanmgr) Packet captures 

 

As the network packet capture is performed using tcpdump, only TCP packets are captured 
within the dump file, and does not include any UDP traffic. It should also be noted that the 
visibility of network traffic is limited to the traffic broadcasted by the access point, as only a 
passive network capture is performed. 
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Network Activity Analysis 

This section covers the security and privacy assessments pertaining to network traffic and 
device communications. Network packet captures were performed during the research period, 
capturing network activity during the following scenarios and events: 

• Device is uninitialised – Perform pairing and initial setup 
• Device is initialised – Perform cleaning 
• Device is initialised – Perform firmware upgrade 
• Device is initialised – Device idle 

Test Infrastructure Setup 

 
Figure 30 - Isolated network connection diagram 

 
 

Table 10 - Network equipment list 
Label Device Purpose 
Vacuum Cleaner Roborock S6 (Device Under Test) 
Dummy Device Lenovo M93p Tiny Simulate network traffic 
Access Point Ubiquiti UniFi UAP Provide Wi-Fi connectivity 
Network Switch TP-Link TL-SG105E  Network expansion, port mirror 
Capture Sink Mac Mini Port mirror 
Router Routerboard RB1200 Network gateway 

 
An isolated network (disconnected from personal devices) was set up to securely monitor the 
network traffic of the vacuum cleaner without external influences. The Roborock S6 vacuum 
cleaner was connected to a WPA2-PSK secured wireless network (via the access point), and 
network activity was port-mirrored to a capture sink for packet capturing purposes. 

Port-mirroring is a network observability function to copy network traffic flowing through a 
switched port to another port, often to allow for the transparent monitoring of data without 
requiring a physical network tap. Given the nature of network switches only forwarding data 
to the required destination port (compared to a network hub which broadcasts data to all 
connected ports/clients), port mirroring allows for the traffic of the wireless access point (and 
consequently the vacuum cleaner) to be monitored. As access points function as network hubs, 
the port-mirroring of the access point effectively provides a means to view all the packets that 
the vacuum cleaner itself can see. 
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Due to the port mirroring functionality limitations specific to the network switch used during 
this thesis (TP-Link TL-SG105E), modifications to the capture sink’s NIC required to only 
permit unidirectional data transmission from the switch to the capture sink, as to effectively 
disconnect the capture sink from the network whilst still receiving port mirrored traffic. 

As the device may exhibit different behaviour under a sterile environment (no other devices 
connected that produce network activity), a “dummy device” was connected to the same 
wireless network to simulate common traffic with the nping utility. 

Packet captures were performed in several batches over several months under the previously 
mentioned test scenarios, with most captures being performed whilst the device was idle - as it 
would best reveal any network activity patterns. Packet captures were performed on both 
firmware versions 01.15.58 and 02.29.02. 

Data Transparency Preparation 
Given the encrypted nature of network communications present on the device, steps must be 
taken to decrypt or otherwise transparently observe the encapsulated payload or message. 
Before exploring the actions taken in this thesis to meaningfully observe the network traffic, 
we first overview common issues faced by developers and other security professionals when 
dealing with analysis of encrypted network traffic. 

Table 11 – Comparison of data transparency methods 

 
SSLKEY 
LOGFILE 

MITM 
(e.g. Burp Suite) Frida Manual 

Patching 
(Straight-forward) System-level 
configuration possible ✓ ✓   

Always respected by application   ✓ ✓ 

Non-HTTP TCP traffic support  ✓ ✓ ✓ 

UDP traffic support   ✓ ✓ 

Application-level crypto support   ✓ ✓ 

Requires access to the binary   ✓ ✓ 

Difficulty Easy Medium Hard Even Harder 
 
Certain programs and web browser such as Firefox and Chrome implement a development 
feature where SSL / TLS session secrets can be stored in a file (via the SSLKEYLOGFILE 
environment variable20). This file can then be used to aid packet capture analysis tools such as 
Wireshark to decrypt encrypted SSL / TLS sessions, and consequently view the unencrypted 
payloads. Whilst seemingly useful, this method is not protocol agnostic and can only be used 
to decrypt website traffic. 

Embedded systems such as the Roborock S6 may include software that do not communicate 
over HTTP(S) – in fact this is often the case as the adoption of MQTT or custom protocols are 
becoming more prevalent in IoT systems (Mishra and Kertesz 2020). There is also no guarantee 
that all applications will respect the presence of the SSLKEYLOGFILE variable. 

  

 
20 https://firefox-source-docs.mozilla.org/security/nss/legacy/key_log_format/index.html 

https://firefox-source-docs.mozilla.org/security/nss/legacy/key_log_format/index.html
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As observed during the static firmware analysis, binaries of the DUT implement application-
level encryption, and hence do not rely on SSL / TLS encryption to secure communications. 
Even if SSL / TLS encryption could be stripped, this method does not provide any means to 
decrypt application-level encryption. This limitation also exists in MITM solutions such as 
Burp Suite, mitmproxy and other associated utilities21 that only aid in SSL / TLS decryption. 

Dynamic instrumentation frameworks like Frida22 exist to solve the inability to decrypt 
application-level encryption, by instead hooking into the program’s function calls. Through 
function hooking, unencrypted payloads can be obtained by intercepting the pre-encryption 
and post-decryption stages. The utilisation of Frida was not pursued due during the thesis due 
to initial technical issues and time constraints. 

The modifiable nature of binary files in the filesystem instead allowed for the injection of 
crafted ARM assembly code that relayed the pre-encrypted / post-decrypted payloads over the 
network to an arbitrarily defined address 10.251.252.253:28422 (UDP), as seen in the figure 
below. By transmitting the payload data over the network, payloads were also captured in the 
packet capture, which consequently simplified the process of correlating network traffic. 

 
Figure 31 - Crypto function hook source code 

It was also noted that certain encrypted traffic (such as the upload of log data) could be studied 
by simply viewing the underlying log files within the filesystem. 

Overview of Network Endpoints 
The table below summarises the endpoints that the Roborock S6 vacuum cleaner connects to 
and is provided to give context to the upcoming observations and results. 

Table 12 – Overview of network endpoints 

Endpoint Protocol Description Used in 
01.15.58 

Used in 
02.29.02 

ms.tuyaeu.com MQTT Inbound requests  ✓ 

m2.tuyaeu.com MQTT Inbound requests ✓  

a2.tuyaeu.com HTTPS Outbound requests ✓ ✓ 

awsde0.fds.api.xiaomi.com FDS23 Logs upload ✓ ✓ 

xx.ot.io.mi.com HTTP (unknown) ✓  

xx.ott.io.mi.com HTTP (unknown) ✓  

 
21 Tools exist to strip HSTS certificate pinning mechanisms, that would otherwise prevent MITM techniques. 
See https://github.com/shroudedcode/apk-mitm 
22 https://frida.re/ 
23 http://docs.api.xiaomi.com/en/fds/ 

https://portswigger.net/burp
https://mitmproxy.org/
https://github.com/shroudedcode/apk-mitm
http://docs.api.xiaomi.com/en/fds/
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Figure 32 below visualises the nature of dataflows between the device and external endpoints 
and displays the inter-process communication flow between relevant processes on the device. 

 
Figure 32 – Network communication diagram 

Network Content Analysis 
Exploration 
The MQTT servers (m2.tuyaeu.com, ms.tuyaeu.com) are responsible for the requests sent 
by the server to the device, such as status checks and queries for device settings. Commands 
sent by the smartphone companion application to remotely navigate the Roborock S6 are also 
delivered through the MQTT protocol (as labelled by the app_rc_move request). Payloads are 
packed as JSON for both requests and replies. 

The a2.tuyaeu.com endpoint is responsible for requests initiated by the device and set to the 
server. These requests include firmware update checks and configuration update polls and are 
also packed in the JSON format. 

As previously mentioned in the static analysis of the Device Logs (rrlogd binary and further 
explored during its upgrade analysis, logs are compressed and secured with RSA + AES before 
being uploaded to the Xiaomi File Storage Service (FDS) server 
(awsde0.fds.api.xiaomi.com). These logs included application config and runtime data, 
device data, system lifecycle data, cleaning statistics and network capture data (as seen in 
v02.29.02). 

In version 01.15.58 of the device firmware, HTTP GET requests were issued to the 
xx.ot.io.mi.com and xx.ott.io.mi.com endpoints, however these endpoints appear to 
be deactivated as they produced no meaningful response (HTTP Error 400). 
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Privacy Policy Violation 

 
Figure 33 – Privacy policy excerpt 

 

As shown in Figure 33, the privacy policy (effective 30th April 2019) for vacuum cleaner data 
in the Android version of Roborock’s smartphone application (app version 3.2.48) states that 
the “password […] is only stored on the device” – however the screenshot below showing 
contents of the uploaded rriot_tuya.log file contradict the statement. Despite firmware 
version 02.29.02 being released 28th April 2022, the wireless network name and password are 
clearly visible within the log file. 

It was noted that whilst a newer dated privacy policy (12th November 2021) was found on the 
vendor’s website24, the privacy policy scope only addressed ‘Email Subscriptions’ and not of 
the privacy of data on, or of the vacuum cleaner. 

 
Figure 34 – Exposure of wireless credentials in rriot_tuya.log 

(FW: v02.29.02) 
 

 

 

 
24 https://global.roborock.com/pages/privacy-policy 

https://global.roborock.com/pages/privacy-policy
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Pairing Traffic 
When the Roborock S6 is uninitialised / factory-reset, the device enters Access Point mode, 
and broadcasts an SSID named roborock-vacuum-s6_miapXXXX, where XXXX is replaced 
with the last four characters of the device’s MAC address. The companion smartphone app will 
then connect to this access point and send the configuration frames to continue the pairing 
process. It was noted that the network was not secured with any passphrase, and consequently 
has no WEP / WPA security protecting transmissions. External parties can easily monitor the 
traffic of open networks, even without needing to join the network (given possession of a 
wireless adapter that supports promiscuous monitoring). 

 
Figure 35 - Plain-text credential transmission during pairing 

Network activity captured during the device pairing action revealed that the JSON-encoded 
configuration payload (containing the wireless credentials) was transmitted from the 
smartphone application to the robot over plain-text, as visible in Figure 35. Here, the SSID 
secureTM, and password password123 are visible to anyone monitoring the network traffic. 
This observation of the plain-text transmission of wireless credentials violates the IoT 
ecosystem’s official security guidelines (Tuya Smart 2020), which outline the requirement for 
a product to “use AES encryption to transmit […] Wi-Fi information”, and is synonymous with 
previous security and privacy studies on devices using the Tuya IoT ecosystem (Vtrust 2018). 

Network Behaviour Analysis 
Local Traffic 
A high number of local traffic requests was observed being emitted by the DUT, albeit small 
in volume (< 3MB). The following local network behaviour was observed: 

• Every 5 minutes a DHCP lease request was issued by the device 
• Every 5 seconds the rriot_tuya process issued a Tuya Discovery Packet 

o Broadcast to udp/6667 containing the device identifier and IP address 

Specifically for firmware v01.15.58, the following additional behaviour was observed: 

• Every 5 minutes an SSDP poll was issued by the device 
o This is an artifact of the operating system effectively running Ubuntu 

• Every 10 seconds the miio_client process issued a request to xx.ott.io.mi.com 
• Every second the miio_client process issued 2 requests to xx.ot.io.mi.com 
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External Traffic 
The following traffic reports are based off network captures whilst the device was not in 
operation (idle) to determine network behaviour patterns. External traffic is broken down by 
endpoint to better characterise each individual process, and further broken down into hourly 
segments with times labelled in reference to Australian Eastern Standard Time (GMT+10). 

Inbound Requests (ms.tuyaeu.com / m2.tuyaeu.com) 

 
Figure 36 – MQTT server data heatmap 

 

 
Figure 37 – MQTT server historical overview 

 
The network heatmap above indicates increased network activity around 3am every day, 
however during these peaks, at most, only 300 KB of data was transferred. Application logs 
from rriot_tuya reveal that the increased activity is a result of the program timing out and 
reconnecting daily at 3am. A small packet was transmitted every minute; however, it was 
determined to be an MQTT keep-alive packet. 

Outbound Requests (a2.tuyaeu.com) 

 
Figure 38 – Control server data heatmap 

 
The rriot_tuya process exhibits more behaviour when communicating to the control server, 
evident in the increased dataflow counts in the figure above. Whilst increased dataflow is 
observed, total average hourly bandwidth does not exceed 10 KB, with peak hourly 
consumption of 20 KB at 3am every day. It was observed that a tuya.device.timer.count 
request was emitted every 25 minutes likely as an uptime poll, which aids in explaining the 
above heatmap. When the device reconnects to the MQTT server at 3am, upgrade checks and 
configuration polls are emitted, explaining the coincident activity. 
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Logs (awsde0.fds.api.xiaomi.com) 

 
Figure 39 – FDS server data heatmap 

 

 
Figure 40 – FDS server flow graph 

 
Inspection of the rrlogd process revealed that it did not transmit nor receive data from the 
FDS server unless logs were being uploaded. The behaviour of somewhat regular network 
activity (as visible in the 2022-07-06 to 2022-07-11 timeframe) can be attributed to the log 
sizes growing and reaching the threshold limit which triggers the logs to be uploaded. Likewise, 
when the MQTT connection is re-established, the increased log activity triggers logs to be 
uploaded, hence why all services incur increased activity at 3am. It was noted that the FDS 
servers which the device uploaded logs to were situated in Germany and the United States as 
visualised in Figure 41 below. 

 
Figure 41 – Geomap of device activity to Xiaomi FDS servers 

 

 

Device Docking 
It was noted that network activity (both flow count and traffic volume) would increase when 
the vacuum returned to the charging dock after cleaning, or when manually docked. This was 
in accordance with a configuration parameter ONLY_UPLOAD_ONDOCK=1 found in the 
rrlog.conf file. 
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Manufacturer Usage Description (RFC 8520) 

 
Figure 42 – MUD usage diagram 

Drafted in 2016, and published in 2019, the Manufacturer Usage Description (MUD) 
specification provided mechanisms for a networked device to advertise its expected network 
activity and behaviour. The supporting network infrastructure can then make use of this MUD 
profile (as outlined in Figure 42) to determine whether certain network traffic should be 
blocked or allowed at the switching level. For example – traffic emitted by a device to 
example.com:8890/tcp can be dropped if the device’s MUD profile does not contain a 
definition for traffic flow to example.com via tcp/8890 – which can potentially mitigate 
foreign processes on a device from reaching out to the internet. 

Whilst communication to distinct ports and hostnames can be controlled via RFC8520, there 
is no ability to perform deep packet inspection – payloads sharing the same connection cannot 
be differentiated. Consequently, this protocol can only be used to protect foreign and 
unidentified traffic connections and should not be relied upon to protect a network or device 
from all network threats (such as vendor C2, MITM and spoofing attempts). 

As Roborock has not released MUD profiles for the Roborock S6, a set has been created 
(Hamza, Ranathunga et al. 2018) from the network traffic captured from firmware versions 
01.15.58 and 02.29.02; and is publicly offered25 to promote the adoption of RFC8520. 
An excerpt of the generated MUD profile is provided in Figure 43. 

 
Figure 43 – MUD profile snippet (v02.29.02) 

 
25 https://featherbear.cc/UNSW-CSE-Thesis/mud 

https://featherbear.cc/UNSW-CSE-Thesis/mud
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Device Entry and Persistence Analysis 

We now detail methods to grant local access to, remote access to, or otherwise root the 
Roborock S6 vacuum cleaner to provide additional functionality and or capability. This section 
covers the practical methods and building blocks that a malicious actor may use, however 
discussions regarding security and privacy implications will be held until the chapter on 
Discussions. 

Table 13 below is provided to summarise the proceeding content. 

Table 13 – Overview of device entry and access methods 

  Serial 
(UART) 

USB 
(ADB) SSH OTA 

(MiIO) Backdoor 

Requires vinda  ✓    
Requires Modifications   ✓  ✓ 
Requires Physical Access ✓ ✓    
Fortified✝ ✓ ✓ ✓ ✓  

Upgrade Resistant#  ✓    

✝Fortified: as describing if the vendor has implemented changes over 
the lifetime of the product to prevent or otherwise restrict access 

#Upgrade resistant: as describing if an entry method will continue to 
work immediately after an upgrade is performed 
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Device Entry 
Serial (UART) 
The device’s serial console (see Preliminary Device Access) is likely the first point of entry to 
gain remote access. This method however requires physical access and disassembly of the 
device, as the UART pins are located on the device’s circuit board located within the device. 
Familiarity and the confidence to touch electrical circuits are also required, in addition to the 
possession a serial device interface (i.e. a USB to UART adapter). 

In newer firmware versions where rr_login is used as the serial handler, additional work 
must be performed to gain root access, due to the verify_shadow authentication flow. After 
the initial connection however, the serial handler can be modified to use the old /bin/login 
handler, which utilises the old Unix authentication method. 

USB (ADB) 
As mentioned previously (see ADB), access to the device via the ADB port is restricted due a 
custom authentication challenge, and further access restrictions even after authentication. 
Where the proposed novel exploit can be performed to remotely execute commands, an 
alternate method exists where the custom adbd is simply replaced with a fully functional 
version, bypassing all added authentication stages. The exploit method however remains 
resilient to upgrades (until patched by the vendor). 

Whilst access to the ADB port is simple and quick (the micro USB port is located underneath 
the removable lid of the device, both methods (command injection, binary replacement) require 
prior access to the device – to either gain knowledge of the vinda content, or to access a shell. 

SSH 
In legacy firmware versions, the rrwatchdoge.conf configuration file could be modified to 
nullify the offendin iptables command, as shown in Figure 44. However, in newer firmware 
versions where the modified dropbear SSH server is used, the iptables drop command is 
present in multiple locations (S04wdgenv, WatchDoge, rrwatchdoge.conf, rrlogd) and 
consequently each file must be patched to permit SSH access. In patching the WatchDoge and 
rrlogd binaries, calls can be simply nullified by replacing the instructions with NOP 
instructions, or by replacing the string ‘22’ with a spurious value like ‘27’, as to cause the 
wrong TCP port to be blocked, whilst maintaining similarity in the assembly code execution. 

 
Figure 44 – rrwatchdoge.conf with SSH access patch 

Access to the SSH server is heavily reliant on the ability to manipulate the filesystem, and 
hence requires prior access to the device. It is beneficial to replace the dropbear binary with 
an OpenSSH server implementation, to allow non-root user authentication whilst supporting 
more secure key exchange algorithms (see SSH Access) and possibly supporting file transfers 
via SFTP. It is also worthwhile to create an additional user on the device, as to provide an 
alternate backup login account.  
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OTA (MiIO) 
Prior to November 2019, Roborock S6 devices supported over-the-air firmware upgrades via 
the MiIO protocol26, where a packet could be transmitted to the device containing instructions 
to upgrade the firmware, as visualised in Figure 45. The device would then fetch the firmware 
and execute the associated setup scripts. The ability to control the firmware URL to a user-
provided package provided the potential to remotely root, or otherwise gain control over the 
device without requiring physical access and/or the disassembly of the device. 

The MiIO OTA rooting method has limited use as only devices manufactured within four 
months of the product’s release (June 2019) were supported. Consequently, this method was 
not applicable to the DUT, as it was manufactured after the method was disabled, however a 
downgrade of the miio_client and SysUpdate binaries confirmed the past exploitability of 
this method (using miio_client version 3.3.9). Figure 46 visualises the assembly code graph 
of miio_client version 3.5.4, where modifications were made to discard the miIO.ota 
payload and cause the process to follow the silent fail path in red. 

 
Figure 45 – MiIO OTA payload 

 

 
Figure 46 – Silent fail of the miIO.ota payload 

 
26 https://github.com/marcelrv/XiaomiRobotVacuumProtocol/blob/master/miIO-ota.md 

https://github.com/marcelrv/XiaomiRobotVacuumProtocol/blob/master/miIO-ota.md
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Persistence 
Remote Access Persistence (Backdoor) 
In benefit of the device’s network stack capability, a virtual private network (VPN) utility or 
software defined network (SDN) tool such as ZeroTier27 can be installed, allowing remote 
communication with the device through standard IP networking, gaining access to local device 
services such as SSH. A proof of concept has been made available28. 

Other remote access methods such as a reverse shell can also be established given the freedom 
of software and hardware support. Figure 47 below provides insights into the ability to create 
private ad-hoc networks despite a remote network topology. 

It is worthwhile to note that the implementation of the RFC8520 protocol (see Manufacturer 
Usage Description) would aid in preventing these remote access methods from working. 

 

 
Figure 47 – ZeroTier control panel 

  

 
27 https://www.zerotier.com 
28 https://featherbear.cc/UNSW-CSE-Thesis/poc/  

https://www.zerotier.com/
https://featherbear.cc/UNSW-CSE-Thesis/poc/
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Reset Persistence 
During the factory reset procedure (reset pin or boot failure), the recovery partition is flashed 
onto both system_a and system_b partitions. As this partition is modifiable, changes to the 
partition will be propagated to the system partitions after a factory reset. Modifications can 
therefore be performed by mounting the recovery partition while the system is live. 
A proof of concept has been made available29. 

Candidate changes may include enabling SSH access, adding a backdoor user, remote access 
persistence patches, and the storage of additional tools like wget, curl, gdb, and strace. 

 

Upgrade Persistence 
During the firmware upgrade procedure, the system is updated in the following manner: 
1. Download the update to UDISK 
2. Extract update to download 
3. Unmount system_a / system_b 
4. Flash download to system_a / system_b 
5. Boot into system_a / system_b 
6. Flash download to system_b / system_a 
7. Boot into system_a / system_b 

Notably, both system_a and system_b partitions are completely overwritten, which would 
discard any changes or patches made on the device, inclusive of all previously stated methods. 

A new method is proposed to achieve upgrade persistence, allowing modifications and other 
rooting artifacts to persist between upgrades. By hooking into the post-extraction stage of the 
firmware upgrade process (after step 2) and manipulating the contents of the download 
partition, upgrade-persistent changes can be performed – however this procedure is time-
sensitive as the interception must occur between the start of the firmware extraction process 
(step 2) and the start of the image flashing process (step 4). 

It is noted that interception tasks should complete as fast as possible, to best ensure that all 
changes will propagate to the system partitions during flashing. Where multiple changes are 
desired to be retained between updates, large sized files and time-bound functions can be 
offloaded onto the recovery or reserve partitions (see Data Persistence), where they can 
be processed during the runtime of the upgraded system. This offloading technique can 
dramatically decrease the number of required steps to perform upgrade persistence patching to 
a single step (i,e. creating a boot entry-point that calls the offloaded scripts) 

Various techniques can be used to write to the download partition, such as a service worker, 
crontab or scheduled task – however one must be mindful of incurred CPU load should the 
technique incur a ‘busy-wait’. Binary patching of the SysUpdate could be performed as an 
alternative to a timed task and guarantee successful modification, however this method is 
complicated and likely prone to failure should the vendor perform unexpected updates to the 
binary. It should also be noted that upgrade persistence patching techniques must also handle 
future firmware upgrades, and thus must self-replicate its functionality. 

 
29 https://featherbear.cc/UNSW-CSE-Thesis/poc/ 

https://featherbear.cc/UNSW-CSE-Thesis/poc/
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Chapter 6 | Discussion 

Commentary 

In discussing the opinions on how manufacturers of IoT / smart home device have addressed 
the increasing concerns of digital privacy and product security, we comment on the collected 
results and findings, with reference to the threat scenarios previously defined in Chapter 4. 

For ease of access, a summary of the threat scenario is provided below: 
• TS0 – Concerned with the visibility and ownership of data and the device 
• TS1 – Concerned with physical (proximal) threats e.g. supply chains, physical access 
• TS2 – Concerned with remote (proximal) threats e.g. monitoring, device takeover 
• TS3 – Concerned with remote (distal) threats e.g. backdoors, cloud services, the vendor  

System Design 
Regarding the embedded system design, Roborock’s decision to strip down their original 
Ubuntu Core based system to a more standard embedded Linux system significantly reduces 
the attack surface that may be exploited in scenario TS2, whereby the reduction in running 
processes consequently generate less network traffic that can be observed by an actor 
monitoring the network. Regarding TS1 and TS3, the reduced set of available software and the 
omission of a package manager on the device additionally increases the effort required to 
sideload and run potentially malicious applications. 

It is however emphasised that malicious intent is not prevented, but only slowed down. As 
such, in the case of TS1 where periods extended access is possible (such as a supply chain 
attacks, or a malicious reseller), the device can still be modified to plant remote access 
persistence and grant an actor remote access even after possession of the device has been 
released. 

Process Privilege Level 
Regarding the privilege level of all processes running under the root account, security 
concerns are naturally raised for TS1, TS2 and TS3, whereby a single vulnerability in any root-
owned process can lead to system takeover. This threat is most prominent in TS3, as a 
vulnerability that lies in the cloud service communications would provide the means for an 
actor to gain control over any affected device over the internet. It is again noted that embedded 
system applications often run with system-level access (i.e. root) or in a root-less environment 
where all processes are effectively elevated – as it often mitigates hardware integration issues. 
Extreme care must therefore be taken when developing and securing such programs, however 
such attention to detail is difficult. 

Device Access 
Efforts to restrict access to the device via the serial terminal, ADB port and SSH shell are 
largely beneficial, as the restrictions significantly impede the ability to gain control of the 
device. In the case of TS1 – ADB communications are restricted because of Roborock’s custom 
access control implementations and requires knowledge of a device-specific secret that can 
only be retrieved through tedious disassembly of the device, which is also required to access 
the UART pins that serve the serial terminal. 
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The long period of time required to disassemble, modify and reassemble the device severely 
decreases the capability for an actor to perform the modification over a number of devices. 
Large-scale modifications through supply chain attacks are only profitable between the stages 
of the flashing of the eMMC storage and the assembly of the device. 

In the case of TS2, access to the device via SSH is prevented due to iptables rules. In later 
versions of the firmware, this restriction is enforced as observed through additional calls 
iptables from the WatchDoge and rrlogd binaries. Should the server be accessible for 
some reason, knowledge of the root password is still required which is unobtainable remotely. 

It is noted that in the case of TS0, the security fortifications serve as hindrance to a device 
owner wanting to study or tinker with the device. The inability to use the ADB port and SSH 
server force an owner to disassemble the device and establish a UART connection, which may 
likely be out of technical ability for many owners who purchase this robot vacuum cleaner. 
Authentication flow modifications may potentially completely break access functionality for 
devices with outdated filesystem layouts, as was experienced with our device under test. 

Modifiable Recovery Partition 
Regarding the ability to modify the recovery partition, whilst useful under TS0 (i.e. as a 
hardware hobbyist) to store software tools and maintain access between factory resets, security 
concerns are raised in the case of TS1 – where the ability to modify the recovery partition 
raises the concern of backdoors being planted during the supply chain, or from a previous 
owner. Backdoors could eventually lead to the compromise of owner’s data, and of the owner’s 
network to which the targeted device is connected to. It is unlikely that an actor with only 
momentary physical access to the device will be able to exploit the reset persistence, due to the 
time required to disassemble and reassemble the device. 

It is recommended that the recovery partition should be marked as ‘permanent read-only’ 
(Western Digital 2017) on the hardware eMMC level, as there is no need for the partition to be 
modified once the initial recovery image is flashed. Hardware write-protection provides the 
best method of data integrity as software-level write protection controls can be subverted (such 
as removing the ‘ro’ parameter from the Linux mount options). 

Should the partition need to be modifiable for some reason, provisions to verify the authenticity 
of the filesystem should be enforced, such as some sort of signature verification or asymmetric 
encryption. Hardware security features like RPMB (Replay-Protected Memory Block) could 
serve to be beneficial, where writes to the storage medium must be paired with an 
authentication key that could be stored in an SE (Secure Element). 

Data Retention 
Whilst data in the UDISK (user data) partition is cleared securely during a factory reset, it is 
not cleared during a disassociation event (when the device is removed from a user’s account), 
despite the device acknowledging the event and entering access point mode. Under TS0 and 
TS1, privacy concerns are raised – as an actor in possession of a recently disassociated device 
may be able to extract UGC and PII, inclusive of LIDAR mapping data, network credentials 
and network dumps. It would be advised for future firmware updates to delete and effectively 
factory reset the device when device disassociation is performed. 
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Pairing Security 
The plain-text transmission of wireless credentials during initial device pairing raises concern 
for TS2, as anyone nearby who is monitoring wireless traffic will be able to eavesdrop and 
intercept the wireless credentials. The respective wireless network could then be joined using 
the intercepted credentials, allowing further access and enumeration into a victim’s network. 
Alarmingly, as there is no passphrase for the pairing access point – the wireless credentials 
within the pair request payload can be intercepted without even requiring the actor to join the 
same network, due to the behaviour of network traffic in an ‘Open’ wireless network. 

It is recommended that the wireless network broadcasted during the device’s access point mode 
be secured with some wireless network security protocol, such as WPA2. Furthermore the 
pairing request should be encrypted, as stated in the Tuya security guidelines (2020). Whilst 
this specific privacy and security concern is only applicable during the pairing of the device, 
assumptions should not be made regarding the likelihood nor presence of a malicious actor 
nearby. 

Encryption of Logs 
Regarding the confidentiality of transmitted data, logs remain secure against TS2, even when 
the device is placed in an adversarial network condition such as a MITM proxy, or where TLS 
/ SSL decryption is present – as logs are encrypted on the application-level. Whilst possible to 
visualise the flow of data and knowledge of network activity, the underlying data is ultimately 
protected with no way to view the decrypted contents without knowledge of the private key. 

The application-encrypted logs are however ineffective against TS1 and TS3, as the log sources 
are simply located within the filesystem. Access to any means to read the contents of files 
(whether it be serial, SSH, SFTP, ADB, reverse SSH or similar backdoor) will result in the 
ability to access log files before they are encrypted. In the case of the vendor, they possess the 
private decryption key, and hence will have unfiltered access to decrypt the log data. 

In the case of TS0, the encryption of logs (and other transmitted data) is similarly trivial to a 
user wanting to view the nature and content of network traffic; however sufficient skill and 
technical knowledge is required to navigate a Linux filesystem, and optionally manually patch 
or dynamically instrument a process to hook into the pre-encryption or post-decryption stages. 

Packet Logging 
With the added implementation of the MSG_LOG_DEBUG_* signal in rrlogd, and the ability 
to perform a tcpdump packet capture in wlanmgr, privacy and security concerns are raised 
under TS3, as the activity of other devices on the same wireless network can be captured. As 
residential network traffic is often large and verbose, a great amount of flow detail can be 
obtained regarding the access to websites, frequency of website visits, the number of devices 
on a network, the types of devices on a network, and information about the network (such as 
the IP address). Whilst geographical lookups of IP address are often inaccurate, knowledge of 
the approximate region that the targeted device is in may aid in further exploitation. 
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Privacy of Uploaded Data 
Concerns surrounding TS0 and TS3 are raised regarding the use of, and necessity to upload all 
the files from rrlogd. Whilst mapping data and packet logging data (as previously discussed) 
may be beneficial to the vendor, as to improve the cleaning functionality of the product, great 
trust must be placed in believing that the data is not misused or abused. 

As discovered, log data was found to contain wireless credentials - despite the privacy policy 
stating that data of that type would not be kept remotely. Consequently, the need to verify 
company statements against their actions is stressed, with better transparency (and somehow 
confirmation) regarding the use of data. The flexibility to control the type of collected data is 
also desired, where privacy-minded owners can choose to opt-out / opt-in of certain log types. 

Response of Other Manufacturers 

It is noted that whilst the Roborock S6 vacuum cleaner faces several privacy and security 
concerns, the company has made considerable effort to fortify their product against potential 
malicious threats. Privacy optimisations such as decreased log verbosity and application-level 
encryption was observed. Likewise, security fortifications such as overflow detection, 
signature verification and access control restrictions were noted. Additional steps can be taken 
by Roborock as a company however, to further improve their digital privacy and product 
security. 

We turn to Xiaomi and Tuya for comparison, to investigate how other companies have 
addressed the increasing concerns for digital privacy and product security. Both Xiaomi and 
Tuya are large IoT ecosystem vendors who lease their infrastructure to white-label vendors and 
OEMs (like Roborock) as a subscription. Naturally, these ecosystem vendors are much larger 
in employee count, as both Xiaomi and Tuya have their own multi-staffed security teams. 

As a result of their larger business (in both popularity, profit and employee count), these 
companies publicly promote the security research of their products and offer a bug bounty to 
incentivise research. Consequently, a high number of security vulnerabilities are discovered 
(as illustrated in Figure 48), allowing these companies to constantly issue security patches and 
fixes to better protect their products. 

 
Figure 48 – Screenshot of CVEs associated with Xiaomi 

Whilst it is noted that Roborock is a small company, it is intriguing to see that only one security 
vulnerability was disclosed despite having released 13 different products since the company’s 
inception in 2014. Whilst is not mandatory for a company to publicly disclose their security 
vulnerabilities, it can conversely negatively illustrate the company’s security posture, as 
customers may be led to believe that the company is hiding its issues. 
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Both Xiaomi’s30 and Tuya’s31 security teams have additionally released white-papers regarding 
security minimums and guidelines for products that utilise their infrastructure. Despite the 
Roborock S6 vacuum cleaner utilising the Tuya infrastructure (through rriot_tuya), the 
failure to encrypt the pairing traffic as outlined in the security guidelines raise concern to 
whether Tuya (and other IoT ecosystem vendors) perform security compliance checks on their 
white-label partners and OEMs before allowing a partner product to be verified and released. 

We end our discussion involving other manufacturers by commenting on the adoption of the 
Manufacturer Usage Description protocol (RFC 8520), or rather why it hasn’t been widely 
adopted within the IoT and networking industry. Currently RFC 8520 does not seem to be 
adopted by any large IoT vendor, nor network equipment manufacturer. Despite Cisco 
spearheading the push for the use of MUD32, only their Catalyst line of network switches 
support the ‘Network Access Device’ role used in the MUD process. 

It is likely that there is no incentive for IoT vendors to release MUD profiles of their devices, 
nor is there an incentive for networking equipment manufacturers to support RFC 8520 as there 
is no recent sign of activate development on any MUD-related projects. Furthermore, whilst 
UNSW’s Internet of Thing Research Group (EE&T)33 has contributed multiple MUD profiles 
for a variety of IoT devices, no other shared repository of MUD profiles exist – which further 
discourages companies from investing time and effort into implementing the specification. 
MUD profiles for the Roborock S6 were generated and are publicly available in the hopes of 
supporting the widespread adoption of RFC 8502. 

Conclusion 

Through the firmware and network analysis from multiple firmware versions of the Roborock 
S6 vacuum cleaner, we conclude that Roborock has made efforts to secure their products and 
respect the privacy of their customers. Specifically, firmware upgrades incorporated changes 
to the ways in which device authentication and remote access was established, as to increase 
the difficulty and time required for local and remote threats to gain access to the device. 
Furthermore, in response to adversarial network conditions where a wireless network may be 
insecure, the confidentiality of transmitted log data was kept through application-level 
encryption that would remain given the presence of TLS / SSL decryption. 

In the context of IoT and smart home device manufacturers in general, a ‘shift-left’ mentality 
to security research is encouraged – evident in the Xiaomi and Tuya each releasing security 
papers and offering bug bounty programs to promote the disclosure and reporting of 
vulnerabilities, as to patch and better protect their products. 

Whilst these companies have made significant improvements to their product’s digital privacy 
and product security, further work is required to address the vulnerabilities and concerns raised 
in this thesis. Notably, IoT ecosystem vendors like Tuya need to perform (or improve) 
compliance checking procedures to ensure that their white-label vendors and OEM clients are 
in accordance with the security policies they released. Product vendors need to additionally 
review and verify their own policies (i.e. privacy policy) to ensure that their products are in 

 
30 https://github.com/MiSecurity/Cyber-Security-Baseline-for-Consumer-Internet-of-Things 
31 https://images.tuyacn.com/smart/docs/TuyaSmart-WhitePaper-Intl.pdf 
32 https://developer.cisco.com/docs/mud/#!what-is-mud/what-is-mud 
33 https://iotanalytics.unsw.edu.au/mudprofiles 

https://github.com/MiSecurity/Cyber-Security-Baseline-for-Consumer-Internet-of-Things
https://images.tuyacn.com/smart/docs/TuyaSmart-WhitePaper-Intl.pdf
https://developer.cisco.com/docs/mud/#!what-is-mud/what-is-mud
https://iotanalytics.unsw.edu.au/mudprofiles
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accordance with their own policies even during upgrades, and that data is securely deleted in 
all expected scenarios. Furthermore, selective control over the nature and type of collected data 
should be given to the user. Modifications to a device’s storage should additionally be locked 
down, where write-access to base data and recovery firmware should be restricted unless 
mandatory. 

In summary, manufacturers of IoT / smart home devices have addressed to privacy and security 
concerns by reacting with positive improvements and fixes, however better care must be taken 
to wholistically improve their privacy and security posture. The contributions offered from this 
thesis sought to critically analyse the security and privacy of the device, as to provide 
suggestions to ultimately improve the state of the art of IoT security and privacy research. 

 
 

Limitations and Future Work 

Whilst a substantial amount of work was performed during this thesis, it is reiterated that the 
DUT used in the study was manufactured in June 2020, one year after the official release of 
the Roborock S6 vacuum cleaner in 2019. Consequently, the scope of security and privacy 
assessment is limited to firmware versions from 2020 – 2022, notably failing to support the 
MiIO OTA exploit procedure present early firmware versions. Furthermore, the DUT’s 
manufacture month coincides date of the firmware version which used the migrated 
authentication flow, providing uncertainty as to whether later manufactured devices contained 
a modified filesystem structure that included files missing from the DUT’s filesystem. 

It is also worth mentioning that the results collected and observations made from this study 
may differ from future replication studies that assess the same Roborock S6 device, as 
variances in the product’s region setting and cloud provider (Tuya in our case) may generate 
different network traffic and device behaviour. 

Further topics of research are presented below which were beyond the scope of the study, or 
otherwise follow the study. 

• Resilience of applications towards MITM and HSTS certificate pinning bypasses 
• Security and strength of the asymmetric keys used 
• Security and/or privacy assessment of the smartphone application 
• Security and/or privacy assessment of the STM32 co-processor 
• Side-channel analysis of sensor data 
• Fuzzing of program binaries on the device to find further vulnerabilities 
• Dynamic instrumentation of program binaries using Frida 
• Upgrade analysis of new firmware versions after v02.29.02 
• Analysis of other Tuya-integrated vacuum cleaners to find similar vulnerabilities 
• Detailed study of the adoption of RFC 8520 
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Appendix 

Appendix 1 – rrlogd log scope excerpt (v01.15.58) 

Archive Contents 

varlog.tar.gz 
(tar_extra_file.sh) 

/var/log/upstart  

/var/log/boot.log  

/var/log/bootdmesg  

/var/log/dmesg  

/var/log/faillog  

/var/log/kern.log  

/var/log/lastlog  

/var/log/rr_try_mount.log  

/var/log/syslog 

misc.gz 

(misc.sh) 

date 

/dev/jiffies 

/proc/interrupts 

/proc/softirqs 

dmesg 

/proc/meminfo 

/proc/vmstat 

/proc/slabinfo 

/proc/zoneinfo 

/proc/pagetypeinfo 

/sys/devices/system/cpu/cpu0/cpufreq/stats/time_in_state 

/sys/devices/system/cpu/cpu1/cpufreq/stats/time_in_state 

/sys/devices/system/cpu/cpu2/cpufreq/stats/time_in_state 

/sys/devices/system/cpu/cpu3/cpufreq/stats/time_in_state 

df -h 

lsof / 

lsof /dev 

lsof /tmp 

lsof /run 

lsof /run/lock 
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lsof /run/shm 

lsof /mnt/updbuf 

lsof /mnt/data 

lsof /mnt/reserve 

lsof /mnt/default 

/sys/devices/platform/uart.0/ctrl_info 

/sys/devices/platform/uart.0/status 

/sys/devices/platform/uart.1/ctrl_info 

/sys/devices/platform/uart.1/status 

/sys/devices/platform/uart.2/ctrl_info 

/sys/devices/platform/uart.2/status 

watchdog.gz watchdog.log 

rrlog.gz rrlog.log 

miio.gz miio.log 

SLAMMAP.tar.gz *.ppm 

SYSUPD_normal_updater.tar.gz SYSUPD_updater_pid*.log 

varlog.tar.gz varlog.tar.gz (itself) 

mt_test.tar.ss.gz 
/mnt/data/rockrobo/Mt* 

/mnt/data/rockrobo/mt* 

uarttest.tar.ss.gz /mnt/data/rockrobo/noupload/uart_test*  

boot_reason.gz boot_reason 

crashlog.gz crashlog 
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Appendix 2 - rr_login authentication loop (v02.29.02) 

 


